我正在尝试为我的决策树模型在R中运行混淆矩阵,但是出现以下错误:
“表(数据,引用,dnn = dnn,...)中的错误:所有参数的长度必须相同”
我不明白为什么它不会运行。
dtree_test <- rpart(writeoff ~ education+employ_status+residential_status+loan_amount+loan_length+
net_income,method="class", data=testnew,parms=list(split="information"))
dtree_test$cptable
plotcp(dtree_test)
dtree_test.pruned <- prune(dtree_test, cp=.01`enter code here`639344)
prp(dtree_test.pruned, type = 2, extra = 104,
fallen.leaves = TRUE, main="Decision Tree")
dtree_test.pred <- predict(dtree_test.pruned, testnew, type="class")
dtree_test.perf <- table(testnew$writeoff, dtree_test.pred,
dnn=c("Actual", "Predicted"))
dtree_test.perf
confusionMatrix(predict(dtree_test.pruned, testnew, type="class"),train$writeoff)
答案 0 :(得分:0)
最后一行是:
confusionMatrix(predict(dtree_test.pruned, testnew, type="class"),train$writeoff)
为数据集testnew
进行预测,但将其与数据集train
中的响应进行比较。
在rpart(...)
中您也有data=testnew
,但也许您是想使用训练数据来拟合模型?