将RDD转换为DataFrame Spark Streaming时发生ClassCastException

时间:2019-03-28 19:23:51

标签: java apache-spark streaming spark-streaming

嗨,我有下一个问题。我正在将Apache Spark Streaming v1.6.0与Java结合使用,以获取来自IBM MQ的消息。我为MQ创建了自定义接收器,但是我遇到的问题是我需要将RDD从JavaDStream转换为DataFrame。为此,我使用foreachRDD迭代了JavaDStream并定义了DataFrame的架构,但是当我运行作业时,第一个消息将抛出下一个异常:

java.lang.ClassCastException:org.apache.spark.rdd.BlockRDDPartition无法转换为org.apache.spark.rdd.ParallelCollectionPartition     在org.apache.spark.rdd.ParallelCollectionRDD.compute(ParallelCollectionRDD.scala:102)     在org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)     在org.apache.spark.rdd.RDD.iterator(RDD.scala:270)     在org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)     在org.apache.spark.scheduler.Task.run(Task.scala:89)     在org.apache.spark.executor.Executor $ TaskRunner.run(Executor.scala:213)     在java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)     在java.util.concurrent.ThreadPoolExecutor $ Worker.run(ThreadPoolExecutor.java:624)     在java.lang.Thread.run(Thread.java:748) 19/03/28 12:53:26警告TaskSetManager:在阶段0.0(TID 0,本地主机)中丢失了任务0.0:java.lang.ClassCastException:org.apache.spark.rdd.BlockRDDPartition无法转换为org.apache.spark .rdd.ParallelCollectionPartition     在org.apache.spark.rdd.ParallelCollectionRDD.compute(ParallelCollectionRDD.scala:102)     在org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)     在org.apache.spark.rdd.RDD.iterator(RDD.scala:270)     在org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)     在org.apache.spark.scheduler.Task.run(Task.scala:89)     在org.apache.spark.executor.Executor $ TaskRunner.run(Executor.scala:213)     在java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)     在java.util.concurrent.ThreadPoolExecutor $ Worker.run(ThreadPoolExecutor.java:624)     在java.lang.Thread.run(Thread.java:748)

然后,代码执行得很好。即使我在MQ中没有任何消息,这也是我在执行工作时的第一条消息。

这是我的CustomMQReceiver

public CustomMQReceiver() {

        super(StorageLevel.MEMORY_ONLY_2());

    }

    @Override
    public void onStart() {

        new Thread() {
            @Override
            public void run() {
                try {
                    initConnection();
                    receive();
                } catch (JMSException ex) {
                    ex.printStackTrace();
                }
            }
        }.start();

    }

    @Override
    public void onStop() {

    }

    private void receive() {

        System.out.print("Started receiving messages from MQ");

        try {

            Message receivedMessage = null;

            while (!isStopped() && (receivedMessage = consumer.receiveNoWait()) != null) {

                String userInput = convertStreamToString(receivedMessage);
                System.out.println("Received data :'" + userInput + "'");
                store(userInput);
            }

            stop("No More Messages To read !");
            qCon.close();
            System.out.println("Queue Connection is Closed");

        } catch (Exception e) {
            e.printStackTrace();
            restart("Trying to connect again");
        } catch (Throwable t) {

            restart("Error receiving data", t);
        }

    }

    public void initConnection() throws JMSException {

        MQQueueConnectionFactory conFactory = new MQQueueConnectionFactory();
        conFactory.setHostName(HOST);
        conFactory.setPort(PORT);
        conFactory.setIntProperty(WMQConstants.WMQ_CONNECTION_MODE, WMQConstants.WMQ_CM_CLIENT);
        conFactory.setQueueManager(QMGR);
        conFactory.setChannel(CHANNEL);
        conFactory.setBooleanProperty(WMQConstants.USER_AUTHENTICATION_MQCSP, true);
        conFactory.setStringProperty(WMQConstants.USERID, APP_USER);
        conFactory.setStringProperty(WMQConstants.PASSWORD, APP_PASSWORD);

        qCon = (MQQueueConnection) conFactory.createConnection();
        MQQueueSession qSession = (MQQueueSession) qCon.createQueueSession(false, 1);
        MQQueue queue = (MQQueue) qSession.createQueue(QUEUE_NAME);
        consumer = (MQMessageConsumer) qSession.createConsumer(queue);
        qCon.start();

    }

    @Override
    public StorageLevel storageLevel() {
        return StorageLevel.MEMORY_ONLY_2();
    }

    private static String convertStreamToString(final Message jmsMsg) throws Exception {

        String stringMessage = "";
        JMSTextMessage msg = (JMSTextMessage) jmsMsg;
        stringMessage = msg.getText();

        return stringMessage;
    }

这是我的火花代码

SparkConf sparkConf = new SparkConf()
                    .setAppName("MQStreaming")
                    .set("spark.driver.allowMultipleContexts", "true")
                    .setMaster("local[*]");

            JavaSparkContext jsc = new JavaSparkContext(sparkConf);
            final SQLContext sqlContext = new SQLContext(jsc);
            JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, new Duration(Long.parseLong(propertiesConf.getProperty("duration"))));

            JavaDStream<String> customReceiverStream = ssc.receiverStream(new CustomMQReceiver());

            customReceiverStream.foreachRDD(new VoidFunction<JavaRDD<String>>() {

                @Override
                public void call(JavaRDD<String> rdd) throws Exception {

                    JavaRDD<Row> rddRow = rdd.map(new Function<String, Row>() {

                        @Override
                        public Row call(String v1) throws Exception {

                            return RowFactory.create(v1);

                        }

                    });

                    try {

                        StructType schema = new StructType(new StructField[]{
                            new StructField("trama", DataTypes.StringType, true, Metadata.empty())
                        });

                        DataFrame frame = sqlContext.createDataFrame(rddRow, schema);

                        if (frame.count() > 0) {
                            //Here is where the first messages throw the exception
                            frame.show();
                            frame.write().mode(SaveMode.Append).json("file:///C:/tmp/");

                        }

                    } catch (Exception ex) {

                        System.out.println(" INFO " + ex.getMessage());

                    }

                }

            });

            ssc.start();
            ssc.awaitTermination();

我无法更改spark的版本,因为此作业将在带有spark 1.6的旧cloudera集群中运行。我不知道我做错了什么还是仅仅是一个错误。救命!!!

1 个答案:

答案 0 :(得分:0)

我解决了自己的问题,我创建SQLContext的方式抛出了此异常,正确的方法是使用JavaStreamingContext创建sqlContext

//JavaStreamingContext jsc = ...
SQLContext sqlContext = new SQLContext(jsc.sparkContext());