def vgg_conv_block(filter_size, inputs):
k_size = 3
with (tf.variable_scope("conv_1")):
conv_1 = convolution2d(
inputs=inputs,
num_outputs=filter_size,
kernel_size=k_size,
stride=1,
padding='SAME',
rate=1,
activation_fn=tf.nn.relu,
weights_initializer=tf.truncated_normal_initializer(dtype=tf.float32, stddev=sigma),
biases_initializer=tf.zeros_initializer,
)
with (tf.variable_scope("conv_2")):
conv_2 = layers.convolution2d(
inputs=conv_1,
num_outputs=filter_size,
kernel_size=k_size,
stride=1,
padding='SAME',
rate=1,
activation_fn=tf.nn.relu,
weights_initializer=tf.truncated_normal_initializer(dtype=tf.float32, stddev=sigma),
biases_initializer=tf.zeros_initializer,
)
return max_pool2d(conv_2, [2,2], [2,2], 'SAME')
x = tf.placeholder(tf.float32, (None, 32, 32))
x_reshaped = tf.reshape(x, (-1, 32, 32, 1))
y = tf.placeholder(tf.float32, (None, classes))
#convolutions
with(tf.variable_scope("vgg_block1")):
vgg_block_1 = vgg_conv_block(32, x_reshaped)
with(tf.variable_scope("vgg_block2")):
conv_output = vgg_conv_block(64, vgg_block_1)
#fully connected
fc0 = layers.flatten(conv_output)
fc1 = fully_connected(
inputs=fc0,
num_outputs=hidden,
weights_initializer=tf.truncated_normal_initializer(dtype=tf.float32, stddev=sigma),
biases_initializer=tf.zeros_initializer,
activation_fn=tf.nn.relu
)
keep_prob= tf.placeholder(tf.float32)
fc_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
# classifier_head
y_ = fully_connected(
inputs=fc_dropout,
num_outputs=classes,
weights_initializer=tf.truncated_normal_initializer(dtype=tf.float32, stddev=sigma),
biases_initializer=tf.zeros_initializer,
activation_fn=None
)
# loss, optimizer and training
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=y_,labels=y)
loss_operation = tf.reduce_mean(cross_entropy)
optimizer = tf.train.AdamOptimizer(learning_rate = lr)
training_operation = optimizer.minimize(loss_operation)
correct_prediction = tf.equal(tf.argmax(y_, 1), tf.argmax(y, 1))
accuracy_operation = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
saver = tf.train.Saver()
我正在使用Python 3.6.3运行此笔记本。我正在尝试运行python笔记本。在此之前的错误是我必须更改以下内容的地方:
`cross_entropy = tf.nn.softmax_cross_entropy_with_logits(y_,y)`
到
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=y_,labels=y)
现在我得到以下错误: 我在下面给出的链接中添加了当前错误的图像。 Current Error
有人可以帮助解决此错误吗?