import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileSystem, FileUtil, Path}
import org.apache.spark.sql.SparkSession
object APP{
def merge(srcPath: String, dstPath: String): Unit = {
val hadoopConfig = new Configuration()
val hdfs = FileSystem.get(hadoopConfig)
FileUtil.copyMerge(hdfs, new Path(srcPath), hdfs, new Path(dstPath), false, hadoopConfig, null)
// the "true" setting deletes the source files once they are merged into the new output
}
def main(args: Array[String]): Unit = {
val url = "jdbc:sqlserver://dc-bir-cdb01;databaseName=dbapp;integratedSecurity=true";
val driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"
val BusinessDate = "2019-02-28"
val destination = "src/main/resources/out/"
val filename = s"Example@$BusinessDate.csv.gz"
val outputFileName = destination + "/temp_" + filename
val mergedFileName = destination + "/merged_" + filename
val mergeFindGlob = outputFileName
val spark = SparkSession.
builder.master("local[*]")
//.config("spark.debug.maxToStringFields", "100")
.appName("Application Big Data")
.getOrCreate()
val query = s"""(SELECT a,b,c From table') tmp """.stripMargin
val responseWithSelectedColumns = spark
.read
.format("jdbc")
.option("url", url)
.option("driver", driver)
.option("dbtable", query)
.load()
print("TOTAL: "+responseWithSelectedColumns.count())
responseWithSelectedColumns
.coalesce(1) //So just a single part- file will be created
.repartition(10)
.write.mode("overwrite")
.option("codec", "org.apache.hadoop.io.compress.GzipCodec")
.format("com.databricks.spark.csv")
.option("charset", "UTF8")
.option("mapreduce.fileoutputcommitter.marksuccessfuljobs", "false") //Avoid creating of crc files
.option("header", "true") //Write the header
.save(outputFileName)
merge(mergeFindGlob, mergedFileName)
responseWithSelectedColumns.unpersist()
spark.stop()
}
}
上面的代码生成一个带有多个标题的文件。
如何修改代码以使一个文件中仅包含一个标头?
答案 0 :(得分:1)
基本上,您正在尝试生成仅具有所有文件头的csv文件。一种简单的解决方案是使用coalesce(1)
并删除您引入的repartition(10)
。这样做的问题是所有数据都进入一个分区。抛出OOM错误可能非常慢,甚至更糟。但是(如果可行)您将获得一个带有一个标头的大文件。
要继续利用spark的并行性a,您可以像这样单独编写标头(假设我们有一个数据帧df
)
val output = "hdfs:///...path.../output.csv"
val merged_output = "hdfs:///...path.../merged_output.csv"
import spark.implicits._
// Let's build the header
val header = responseWithSelectedColumns
.schema.fieldNames.reduceLeft(_+","+_)
// Let's write the data
responseWithSelectedColumns.write.csv(output)
// Let's write the header without spark
val hadoopConfig = new Configuration()
val hdfs = FileSystem.get(hadoopConfig)
val f = hdfs.create(new Path(output + "/header"))
f.write(header.getBytes)
f.close()
// Let's merge everything into one file
FileUtil.copyMerge(hdfs, new Path(output), hdfs, new Path(merged_output),
false,hadoopConfig, null)
还请注意,spark 2.x支持开箱即用地编写csv。这是我用来代替databricks库的东西,它使事情变得更加冗长。