我正在尝试在python 3中使用spacy从文本中提取语言特征。我的输入看起来像这样
Sent_id Text
1 I am exploring text analytics using spacy
2 amazing spacy is going to help me
我正在通过将单词提取为具有我提供的特定POS模式的三语组/二语组短语来寻找这样的输出。像名词VERB名词,ADJ名词等,并保留数据框结构。如果一个句子中有多个词组,则该记录必须与新词组重复。
Sent_id Text Feature Pattern
1 I am exploring text analytics using spacy exploring text analytics VERB NOUN NOUN
1 I am exploring text analytics using spacy analytics using spacy NOUN VERB NOUN
2 amazing spacy is going to help me amazing spacy ADJ NOUN
答案 0 :(得分:1)
intput: 1234500000
output: 2345000000
内置了强大的模式匹配语言:spaCy docs和SO answer用于解决类似问题。
通过这种方式,您不必像accepted answer中的@mujjiga一样将正则表达式和POS标签混在一起。
所以您的示例如下所示:
spacy
打印出3个匹配项及其范围(开始和结束单词位置):
nlp = spacy.load('en_core_web_sm')
from spacy.matcher import Matcher
examples = [
"I am exploring text analytics using spacy",
"amazing spacy is going to help me",
]
patterns = [
[{'POS': 'NOUN'}, {'POS': 'VERB'}, {'POS': 'NOUN'}],
[{'POS': 'VERB'}, {'POS': 'NOUN'}],
]
matcher = Matcher(nlp.vocab)
matcher.add("noun-verb-noun", None, patterns[1])
matcher.add("verb-noun", None, patterns[0])
for text in examples:
doc = nlp(text)
matches = matcher(doc)
for match_id, start, end in matches:
string_id = nlp.vocab.strings[match_id]
span = doc[start:end]
print(string_id, start, end, span.text)
答案 1 :(得分:0)
import spacy
import pandas as pd
import re
# Load spacy model once and reuse
nlp = spacy.load('en_core_web_sm')
# The dataframe with text
df = pd.DataFrame({
'Sent_id': [1,2],
'Text': [ "I am exploring text analytics using spacy", "amazing spacy is going to help me"]
})
# Patters we are intrested in
patterns = ["VERB NOUN", "NOUN VERB NOUN"]
# Convert each pattern into regular expression
re_patterns = [" ".join(["(\w+)_!"+pos for pos in p.split()]) for p in patterns]
def extract(nlp, text, patterns, re_patterns):
"""Extracts the pieces in text maching the POS pattern in patterns
args:
nlp : Loaded Spicy model object
text: The input text
patterns: The list of patters to be searched
re_patterns: The patterns converted into regex
returns: A list of tuples of form (t,p) where
t is the part of text matching the pattern p in patterns
"""
doc = nlp(text)
matches = list()
text_pos = " ".join([token.text+"_!"+token.pos_ for token in doc])
for i, pattern in enumerate(re_patterns):
for result in re.findall(pattern, text_pos):
matches.append([" ".join(result), patterns[i]])
return matches
# Test it
print (extract(nlp, "A sleeping cat and walking dog", patterns, re_patterns))
# Returns
# [['sleeping cat', 'VERB NOUN'], ['walking dog', 'VERB NOUN']]
# Extract the matched patterns
df['matches'] = df['Text'].apply(lambda x: extract(nlp,x,patterns,re_patterns))
# Convert the list of tuples into rows
df = df.matches.apply(pd.Series).merge(df, right_index = True, left_index = True).drop(["matches"], axis = 1)\
.melt(id_vars = ['Sent_id', 'Text'], value_name = "matches").drop("variable", axis = 1)
# Add the matched text and matched patterns into new columns
df[['matched_text','matched_pattern']]= df.matches.apply(pd.Series)
# Drop the column and cleanup
df = df.drop("matches", axis = 1).sort_values('Sent_id')
df = df.drop_duplicates(subset =["matched_text", "matched_pattern"], keep='last')
Sent_id Text matched_text matched_pattern
0 1 I am exploring text analytics using spacy exploring text VERB NOUN
2 1 I am exploring text analytics using spacy using spacy VERB NOUN
4 1 I am exploring text analytics using spacy analytics using spacy NOUN VERB NOUN
1 2 amazing spacy is going to help me NaN NaN