我看着this SO question,that SO question。我关注了this github method,请查看ISSUES,以帮助您了解如何解决此问题。
步骤1:将以下内容复制到文本编辑器中,并另存为 test.csv 文件:
我的数据源是NVD JSON FEEDS,我处理并清理并创建了此数据集,其中显示了前25行。
Year,Vendor name,Product name,CVE,Major,Minor,Build,Revision
1988,eric_allman,sendmail,CVE-1999-0095,5,5.58,,
1988,ftp,ftp,CVE-1999-0082,*,,,
1988,ftpcd,ftpcd,CVE-1999-0082,*,,,
1989,bsd,bsd,CVE-1999-1471,4,4.2,,
1989,bsd,bsd,CVE-1999-1471,4,4.3,,
1989,sun,sunos,CVE-1999-1122,4,4.0,,
1989,sun,sunos,CVE-1999-1122,4,4.0,4.0.1,
1989,sun,sunos,CVE-1999-1122,4,4.0,4.0.3,
1989,sun,sunos,CVE-1999-1467,4,4.0,,
1989,sun,sunos,CVE-1999-1467,4,4.0,4.0.1,
1989,sun,sunos,CVE-1999-1467,4,4.0,4.0.2,
1989,sun,sunos,CVE-1999-1467,4,4.0,4.0.3,
1989,sun,sunos,CVE-1999-1467,4,4.0,4.0.3c,
1990,digital,vms,CVE-1999-1057,5,5.3,,
1990,freebsd,freebsd,CVE-2000-0388,3,3.0,,
1990,freebsd,freebsd,CVE-2000-0388,3,3.1,,
1990,freebsd,freebsd,CVE-2000-0388,3,3.2,,
1990,freebsd,freebsd,CVE-2000-0388,3,3.3,,
1990,freebsd,freebsd,CVE-2000-0388,3,3.4,,
1990,hp,apollo_domain_os,CVE-1999-1115,sr10,sr10.2,,
1990,hp,apollo_domain_os,CVE-1999-1115,sr10,sr10.3,,
1990,next,nex,CVE-1999-1392,1,1.0a,,
1990,next,next,CVE-1999-1198,2,2.0,,
1990,next,next,CVE-1999-1391,1,1.0,,
1990,next,next,CVE-1999-1391,1,1.0a,,
第2步:将以下代码复制并粘贴到R中并运行它:
我的代码遵循this SO question,尤其是@NinjaElvis
的讨论。我认为可以创建3个或更多级别。只是做更多的研究并弄清楚。
############################
suppressPackageStartupMessages(library("highcharter"))
library("dplyr")
library("purrr")
library("data.table")
second_el_to_numeric <- function(ls){
map(ls, function(x){
x[[2]] <- as.numeric(x[[2]])
x
})
}
cve_affected_product <- fread("test.csv")
# LAYER ONE YEAR DRILLDOWN VIEW #########################
Year <- cve_affected_product[,c(1:2)]
Year <- unique(Year[,list(Year,`Vendor name`)])
Year <- Year[,c(1)][,count:=1]
Year <- setDT(aggregate(.~ Year ,data=Year,FUN=sum))
#setorder(Year, Year, `Vendor name`)
years_df <- tibble(
name = c(Year$Year),
y = c(Year$count),
drilldown = tolower(paste(name,'id'))
)
ds <- list_parse(years_df)
names(ds) <- NULL
# Vendor View HC ###########
hc <- highchart() %>%
hc_chart(type = "column") %>%
hc_title(text = "Basic drilldown") %>%
hc_xAxis(type = "category") %>%
hc_yAxis(visible = FALSE,reversed = FALSE) %>%
hc_legend(enabled = FALSE) %>%
hc_plotOptions(
series = list(
boderWidth = 0,
dataLabels = list(enabled = TRUE)
)
) %>%
hc_add_series(
name = "Vendors",
colorByPoint = TRUE,
data = ds
)
# LAYER TWO VENDOR DRILLDOWN VIEW #########################
Vendor <- cve_affected_product[,c(1:3)]
Vendor <- unique(Vendor[,list(Year,`Vendor name`,`Product name`)])
Vendor <- Vendor[,c(1:2)][,count:=1]
Vendor <- setDT(aggregate(.~ Year+`Vendor name` ,data=Vendor,FUN=sum))
setorder(Vendor, Year, `Vendor name`)
years <- as.character(unique(Vendor$Year))
for(i in 1:length(years)){
tempdf <- Vendor[Vendor$Year==years[i],]
dfname <- paste("df",years[i],sep="")
dsname <- paste("ds",years[i],sep="")
X <- tibble(
name = c(tempdf$`Vendor name`),
y = c(tempdf$count),
drilldown = tolower(paste(name,'id'))
)
Y <- second_el_to_numeric(list_parse2(assign(dfname,X)))
assign(dsname,Y)
}
# Vendor View HC ###########
hc <- hc %>%
hc_drilldown(
allowPointDrilldown = TRUE,
series = list(
list(
id = "1988 id",
data = ds1988,
colorByPoint = TRUE,
keys = list('name','y','drilldown')
),
list(
id = "1989 id",
data = ds1989,
keys = list('name','y','drilldown')
),
list(
id = "1990 id",
data = ds1990,
keys = list('name','y','drilldown')
)#,
)
)
# LAYER THREE PRODUCT DRILLDOWN VIEW #########################
Product <- cve_affected_product[,c(1:4)]
Product <- unique(Product[,list(Year,`Vendor name`,`Product name`, CVE)])
Product <- Product[,c(1:3)][,count:=1]
Product <- setDT(aggregate(.~ Year+`Vendor name`+`Product name` ,data=Product,FUN=sum))
setorder(Product, Year, `Vendor name`,`Product name`)
vendors <- as.character(unique(Product$`Vendor name`))
for(i in 1:length(vendors)){
tempdf <- Product[Product$`Vendor name`==vendors[i],]
dfname <- paste("df",vendors[i],sep="")
dsname <- paste("ds",vendors[i],sep="")
X <- tibble(
name = c(tempdf$`Product name`),
y = c(tempdf$count),
drilldown = tolower(paste(name,'id'))
)
Y <- second_el_to_numeric(list_parse2(assign(dfname,X)))
assign(dsname,Y)
}
# Product View HC ###########
hc <- hc %>%
hc_drilldown(
allowPointDrilldown = TRUE,
series = list(
list(
id = "eric_allman id",
data = dseric_allman,
keys = list('name','y','drilldown')
),
list(
id = "ftp id",
data = dsftp,
keys = list('name','y','drilldown')
),
list(
id = "ftpcd id",
data = dsftpcd,
keys = list('name','y','drilldown')
),
list(
id = "bsd id",
data = dsbsd,
keys = list('name','y','drilldown')
),
list(
id = "sun id",
data = dssun,
keys = list('name','y','drilldown')
),
list(
id = "digital id",
data = dsdigital,
keys = list('name','y','drilldown')
),
list(
id = "freebsd id",
data = dsfreebsd,
keys = list('name','y','drilldown')
),
list(
id = "hp id",
data = dshp,
keys = list('name','y','drilldown')
),
list(
id = "next id",
data = dsnext,
keys = list('name','y','drilldown')
)#,
)
)
# LAYER FOUR CVE DRILLDOWN VIEW #########################
Product_CVE <- cve_affected_product[,c(1:5)]
Product_CVE <- unique(Product_CVE[,list(Year,`Vendor name`,`Product name`, CVE, Major)])
Product_CVE <- Product_CVE[,c(1:4)][,count:=1]
Product_CVE <- setDT(aggregate(.~ Year+`Vendor name`+`Product name`+CVE ,data=Product_CVE,FUN=sum))
setorder(Product_CVE, Year, `Vendor name`,`Product name`, CVE)
products <- as.character(unique(Product_CVE$`Product name`))
for(i in 1:length(products)){
tempdf <- Product_CVE[Product_CVE$`Product name`==products[i],]
ifelse(tempdf$`Vendor name`==tempdf$`Product name`,
dfname <- paste("df_",products[i],sep=""),
dfname <- paste("df",products[i],sep=""))
ifelse(tempdf$`Vendor name`==tempdf$`Product name`,
dsname <- paste("ds_",products[i],sep=""),
dsname <- paste("ds",products[i],sep=""))
X <- tibble(
name = gsub("-", "", c(tempdf$CVE)),
y = c(tempdf$count),
drilldown = tolower(paste(name,'id'))
)
Y <- second_el_to_numeric(list_parse2(assign(dfname,X)))
assign(dsname,Y)
}
# CVE View HC ###########
hc <- hc %>%
hc_drilldown(
allowPointDrilldown = TRUE,
series = list(
list(
id = "sendmail id",
data = dssendmail,
keys = list('name','y','drilldown')
),
list(
id = "ftp id",
data = ds_ftp,
keys = list('name','y','drilldown')
),
list(
id = "ftpcd id",
data = ds_ftpcd,
keys = list('name','y','drilldown')
),
list(
id = "bsd id",
data = ds_bsd,
keys = list('name','y','drilldown')
),
list(
id = "sunos id",
data = dssunos,
keys = list('name','y','drilldown')
),
list(
id = "vms id",
data = dsvms,
keys = list('name','y','drilldown')
),
list(
id = "freebsd id",
data = ds_freebsd,
keys = list('name','y','drilldown')
),
list(
id = "apollo_domain_os id",
data = dsapollo_domain_os,
keys = list('name','y','drilldown')
),
list(
id = "nex id",
data = dsnex,
keys = list('name','y','drilldown')
),
list(
id = "next id",
data = ds_next,
keys = list('name','y','drilldown')
)
)
)
问题: 我应该可以单击供应商 eric_allman 并进行深入研究,但是我没有。我希望能够一直追溯到修订版本(如果存在)。这只是new functionality for my app的原型才能使其工作。但是,高章程并不能使其变得简单或有效。我的数据集有将近400万个观测值。这将是下一个如何解决的难题。
如果我不能使用R来做,我什至考虑使用D3 by creating a JSON file in python。但是,在python中创建JSON文件并非易事,但可行。我目前正在研究python代码作为备份。
感谢您的帮助和任何建议
答案 0 :(得分:0)
发布此问题后,我很感兴趣,因此我决定进行更多研究,因为大多数研究都向我指出了如何使用javascript进行操作的示例。 Google搜索将我带到this SO response到@K. Rohde
这篇文章来自2015
,我非常感谢他如何解释这两种不同的方法。我最终使用了两者的混合方法。
对于有兴趣了解向下钻取如何工作的用户,go to my shiny app。在页面Click on Visualizations
上,然后在"Drill Down For Vendor CVE Affected Products Versions and Revisions"
上尝试一下。同样,如果没有@K. Rohde
写完,我就不会做。