我想估算模型Logistic回归模型的3级水平的ROC曲线和AUC。我有此代码:
Y为:“ 1”,“ 2”和“ 3”
model<-multinom(Y ~.,data = train)
predic1<-predict(model,newdata = test[,-1], type = 'prob')
library('ROCR')
pred <- ROCR::prediction(predic1,factor(test$Y))
plot(ROCR::performance(pred, measure="tpr" , x.measure="fpr"),
xlab='False Positive Rate',
ylab='True Positive Rate')
(AUC <- (attributes(ROCR::performance(pred, measure="auc"))$y.value[[1]][[1]][1]))
行:
"pred <- ROCR::prediction(predic1,factor(test$Y))"
产生此错误:
Error in ROCR::prediction(predic1, factor(test$Y)) :
Number of cross-validation runs must be equal for predictions and labels.
任何建议,都可以估算多项式模型的ROC曲线。