下面是两组代码。第一组代码起作用并给出期望的结果。但是,当我尝试扩展数据框的大小时(如第二组代码中的那样),使用额外的列会收到错误消息。
我收到的错误消息如下。
raise ValueError("Keyword argument sequences for broadcasting must all be the same lengths. Got lengths: %r" % sorted(list(lengths)))
ValueError: Keyword argument sequences for broadcasting must all be the same lengths. Got lengths: [3, 4]
raise ValueError("Keyword argument sequences for broadcasting must all be the same lengths. Got lengths: %r" % sorted(list(lengths)))
ValueError: Keyword argument sequences for broadcasting must all be the same lengths. Got lengths: [3, 4]
有效的代码1
import pandas as pd
from bokeh.models import ColumnDataSource
from bokeh.plotting import figure, show
from bokeh.palettes import Spectral3
df = pd.DataFrame({'Category': ['<£5000', '£100K to £250K'],
'01/01/2014': [8,1],
'01/01/2015': [8,2],
'01/01/2016': [7,1]})
grouped = df.groupby('Category')['01/01/2014', '01/01/2015', '01/01/2016'].mean().round(0)
source = ColumnDataSource(grouped)
countries = source.data['Category'].tolist()
p = figure(x_range=countries)
p.vbar_stack(stackers=['01/01/2014', '01/01/2015', '01/01/2016'],
x='Category', source=source,
legend = ['01/01/2014 ', '01/01/2015 ', '01/01/2016 '],
width=0.5, color=Spectral3)
p.title.text ='Average Number of Trades by Portfolio Size'
p.legend.location = 'top_right'
p.xaxis.axis_label = 'Portfolio Size'
p.xgrid.grid_line_color = None #remove the x grid lines
p.yaxis.axis_label = 'Average Number of Trades'
show(p)
代码2无效。附加日期已添加。
import pandas as pd
from bokeh.models import ColumnDataSource
from bokeh.plotting import figure, show
from bokeh.palettes import Spectral3
df = pd.DataFrame({'Category': ['<£5000', '£100K to £250K'],
'01/01/2014': [8,1],
'01/01/2015': [8,2],
'01/01/2016': [7,1],
'01/01/2017': [9,4]})
grouped = df.groupby('Category')['01/01/2014', '01/01/2015', '01/01/2016', '01/01/2017'].mean().round(0)
source = ColumnDataSource(grouped)
countries = source.data['Category'].tolist()
p = figure(x_range=countries)
p.vbar_stack(stackers=['01/01/2014', '01/01/2015', '01/01/2016', '01/01/2017'],
x='Category', source=source,
legend = ['01/01/2014 ', '01/01/2015 ', '01/01/2016 ', '01/01/2017 '],
width=0.5, color=Spectral3)
p.title.text ='Average Number of Trades by Portfolio Size'
p.legend.location = 'top_right'
p.xaxis.axis_label = 'Portfolio Size'
p.xgrid.grid_line_color = None #remove the x grid lines
p.yaxis.axis_label = 'Average Number of Trades'
show(p)
答案 0 :(得分:1)
问题是您增加了数据框中的列数,但是颜色集Spectral3仍然只有3种颜色。 以下代码使用Spectral [11],因此最多可容纳11个数据框列。要获得更多的列/颜色,您需要切换到提供更多颜色的其他调色板(经过Bokeh v1.0.4测试的代码)
import pandas as pd
from bokeh.models import ColumnDataSource
from bokeh.plotting import figure, show
from bokeh.palettes import Spectral
df = pd.DataFrame({ 'Category': ['<5000 EUR', '100K EUR to 250K EUR'],
'01/01/2014': [8, 1],
'01/01/2015': [8, 2],
'01/01/2016': [7, 1],
'01/01/2017': [9, 4] })
nmb_columns = (len(df.columns) - 1)
grouped = df.groupby('Category')['01/01/2014', '01/01/2015', '01/01/2016', '01/01/2017'].mean().round(0)
source = ColumnDataSource(grouped)
countries = source.data['Category'].tolist()
p = figure(x_range = countries)
p.vbar_stack(stackers = ['01/01/2014', '01/01/2015', '01/01/2016', '01/01/2017'],
x = 'Category', source = source,
legend = ['01/01/2014 ', '01/01/2015 ', '01/01/2016 ', '01/01/2017 '],
width = 0.5, color = Spectral[11][:nmb_columns])
p.title.text = 'Average Number of Trades by Portfolio Size'
p.legend.location = 'top_left'
p.legend.click_policy = 'hide'
p.xaxis.axis_label = 'Portfolio Size'
p.xgrid.grid_line_color = None # remove the x grid lines
p.yaxis.axis_label = 'Average Number of Trades'
show(p)
结果: