我的问题与此r count combinations of elements in groups类似,但是,首先,我想在 Comb 列中按组对所有可能的组合进行分组,其次,根据年份计算组合的出现次数在 n 列中。
使用相同的模拟数据集:
> dat = data.table(group = c(1,1,1,2,2,2,3,3), id=c(10,11,12,10,11,13,11,13))
> dat
group id year
1: 1 10 2010
2: 1 11 2010
3: 1 12 2010
4: 2 10 2011
5: 2 11 2011
6: 2 13 2011
7: 3 11 2012
8: 3 13 2012
理想的结果:
> dat
group Comb year n
1: 1 10 11 2010 1
2: 1 11 12 2010 1
3: 1 12 10 2010 1
4: 2 10 11 2011 2
5: 2 11 13 2011 1
6: 2 13 10 2011 1
7: 3 11 13 2012 2
我非常感谢dplyr的可能解决方案。
谢谢
答案 0 :(得分:1)
这是一个解决方案,首先显示为data.table,然后显示为dplyr。过程是相同的:我们对组进行自我连接,过滤ID组合以一致顺序排列(任何顺序都可以,我们选择first id < second id
),按组合对行进行编号,然后删除未使用的行列。
dat = data.table(group = c(1,1,1,2,2,2,3,3), id=c(10,11,12,10,11,13,11,13))
## with data.table
merge(dat, dat, by = "group", allow.cartesian = TRUE)[
id.x < id.y, ][
, Comb := paste(id.x, id.y)][
, n := 1:.N, by = .(Comb)
][, .(group, Comb, n)]
# group Comb n
# 1: 1 10 11 1
# 2: 1 10 12 1
# 3: 1 11 12 1
# 4: 2 10 11 2
# 5: 2 10 13 1
# 6: 2 11 13 1
# 7: 3 11 13 2
## with dplyr
dat %>% full_join(dat, by = "group") %>%
filter(id.x < id.y) %>%
group_by(Comb = paste(id.x, id.y)) %>%
mutate(n = row_number()) %>%
select(group, Comb, n)
# # A tibble: 7 x 3
# # Groups: Comb [5]
# group Comb n
# <dbl> <chr> <int>
# 1 1 10 11 1
# 2 1 10 12 1
# 3 1 11 12 1
# 4 2 10 11 2
# 5 2 10 13 1
# 6 2 11 13 1
# 7 3 11 13 2