我必须用数据帧中同一列的立即值填充第一个空值。此逻辑仅适用于该列的第一个连续的空值。
我有一个与下面类似的数据框
//I replaced null to 0 in value column
val df = Seq( (0,"exA",30), (0,"exB",22), (0,"exC",19), (16,"exD",13),
(5,"exE",28), (6,"exF",26), (0,"exG",12), (13,"exH",53))
.toDF("value", "col2", "col3")
scala> df.show(false)
+-----+----+----+
|value|col2|col3|
+-----+----+----+
|0 |exA |30 |
|0 |exB |22 |
|0 |exC |19 |
|16 |exD |13 |
|5 |exE |28 |
|6 |exF |26 |
|0 |exG |12 |
|13 |exH |53 |
+-----+----+----+
我期望从这个数据帧开始
scala> df.show(false)
+-----+----+----+
|value|col2|col3|
+-----+----+----+
|16 |exA |30 | // Change the value 0 to 16 at value column
|16 |exB |22 | // Change the value 0 to 16 at value column
|16 |exC |19 | // Change the value 0 to 16 at value column
|16 |exD |13 |
|5 |exE |28 |
|6 |exF |26 |
|0 |exG |12 | // value should not be change here
|13 |exH |53 |
+-----+----+----+
请帮助我解决这个问题。
答案 0 :(得分:1)
您可以为此使用Window功能
val df = Seq( (0,"exA",30), (0,"exB",22), (0,"exC",19), (16,"exD",13),
(5,"exE",28), (6,"exF",26), (0,"exG",12), (13,"exH",53))
.toDF("value", "col2", "col3")
val w = Window.orderBy($"col2".desc)
df.withColumn("Result", last(when($"value" === 0, null).otherwise($"value"), ignoreNulls = true).over(w))
.orderBy($"col2")
.show(10)
会导致
+-----+----+----+------+
|value|col2|col3|Result|
+-----+----+----+------+
| 0| exA| 30| 16|
| 0| exB| 22| 16|
| 0| exC| 19| 16|
| 16| exD| 13| 16|
| 5| exE| 28| 5|
| 6| exF| 26| 6|
| 0| exG| 12| 13|
| 13| exH| 53| 13|
+-----+----+----+------+
仅需使用表达式df.orderBy($"col2")
才能以正确的顺序显示最终结果。如果您不关心最终订单,可以跳过它。
更新 要获得所需的确切信息,您应该使用一些更复杂的代码
val w = Window.orderBy($"col2")
val w2 = Window.orderBy($"col2".desc)
df.withColumn("IntermediateResult", first(when($"value" === 0, null).otherwise($"value"), ignoreNulls = true).over(w))
.withColumn("Result", when($"IntermediateResult".isNull, last($"IntermediateResult", ignoreNulls = true).over(w2)).otherwise($"value"))
.orderBy($"col2")
.show(10)
+-----+----+----+------------------+------+
|value|col2|col3|IntermediateResult|Result|
+-----+----+----+------------------+------+
| 0| exA| 30| null| 16|
| 0| exB| 22| null| 16|
| 0| exC| 19| null| 16|
| 16| exD| 13| 16| 16|
| 5| exE| 28| 16| 5|
| 6| exF| 26| 16| 6|
| 0| exG| 12| 16| 0|
| 13| exH| 53| 16| 13|
+-----+----+----+------------------+------+
答案 1 :(得分:0)
我认为您需要根据col2的顺序采用第一个非null或非零值。请在下面找到脚本。我在spark的内存中创建了一个表来编写sql。
val df = Seq( (0,"exA",30), (0,"exB",22), (0,"exC",19), (16,"exD",13),
(5,"exE",28), (6,"exF",26), (0,"exG",12), (13,"exH",53))
.toDF("value", "col2", "col3")
df.registerTempTable("table_df")
spark.sql("with cte as(select *,row_number() over(order by col2) rno from table_df) select case when value = 0 and rno<(select min(rno) from cte where value != 0) then (select value from cte where rno=(select min(rno) from cte where value != 0)) else value end value,col2,col3 from cte").show(df.count.toInt,false)
如有任何疑问,请告诉我。
答案 2 :(得分:-1)
我向DF添加了一个具有增量ID的新列
import org.apache.spark.sql.functions._
val df_1 = Seq((0,"exA",30),
(0,"exB",22),
(0,"exC",19),
(16,"exD",13),
(5,"exE",28),
(6,"exF",26),
(0,"exG",12),
(13,"exH",53))
.toDF("value", "col2", "col3")
.withColumn("UniqueID", monotonically_increasing_id)
过滤DF以使其具有非零值
val df_2 = df_1.filter("value != 0")
创建变量“ limit”以限制所需的前N行,并为第一个非零值限制变量Nvar
val limit = df_2.agg(min("UniqueID")).collect().map(_(0)).mkString("").toInt + 1
val nVal = df_1.limit(limit).agg(max("value")).collect().map(_(0)).mkString("").toInt
使用具有条件的相同名称(“值”)的列创建DF
val df_4 = df_1.withColumn("value", when(($"UniqueID" < limit), nVal).otherwise($"value"))