使用purrr
和朋友阅读大量的csvs之后,我得到了一个tibble
,看起来像这样:
library(tidyverse)
df <-
tibble(
df_name = c("A", "B", "A", "A", "B"),
data = list(iris)
)
df
# A tibble: 5 x 2
df_name data
<chr> <list>
1 A <data.frame [150 × 5]>
2 B <data.frame [150 × 5]>
3 A <data.frame [150 × 5]>
4 A <data.frame [150 × 5]>
5 B <data.frame [150 × 5]>
我想用公用的rbind
df_name
(或等效的)所有数据。我希望输出是一个命名列表。我可以使用tapply
:
desired = tapply(df$data, df$df_name, function(y) do.call(rbind,y))
List of 2
$ A:'data.frame': 450 obs. of 5 variables:
..$ Sepal.Length: num [1:450] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
..$ Sepal.Width : num [1:450] 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
..$ Petal.Length: num [1:450] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
..$ Petal.Width : num [1:450] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
$ B:'data.frame': 300 obs. of 5 variables:
..$ Sepal.Length: num [1:300] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
..$ Sepal.Width : num [1:300] 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
..$ Petal.Length: num [1:300] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
..$ Petal.Width : num [1:300] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "dim")= int 2
- attr(*, "dimnames")=List of 1
..$ : chr [1:2] "A" "B"
我不知道如何对purrr
动词执行相同的操作。我认为也许我需要先设置列表名称:
df_p <-
df %>%
mutate(data = setNames(data, df_name))
我发现了this个问题,但我不知道如何在这种情况下申请。
答案 0 :(得分:3)
我们可以使用tidyr::unnest
library(tidyverse)
df %>% split(.$df_name) %>% map(.%>%unnest() %>% select(-df_name))
#OR
df %>% split(.$df_name) %>% map(~unnest(.) %>% select(-df_name))
df %>% unnest(data) %>% split(.$df_name)
@kath指出我们可以直接使用unnest
df %>% split(.$df_name) %>% map(unnest)
答案 1 :(得分:2)
您可以使用import com.fasterxml.jackson.annotation.JsonIgnoreProperties;
import com.fasterxml.jackson.databind.PropertyNamingStrategy;
import com.fasterxml.jackson.databind.annotation.JsonNaming;
@JsonNaming(PropertyNamingStrategy.SnakeCaseStrategy.class)
@JsonIgnoreProperties(ignoreUnknown = true)
public class Product {
@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private int id;
private String name;
private int price;
private String vendor;
private String description;
private Boolean returnPolicy;
中的reduce
和purrr
中的bind_rows
(类似于rbind
)。
dplyr
对于与您的df_list <- df %>%
group_by(df_name) %>%
summarize(data = list(reduce(data, bind_rows)))
df_list
# A tibble: 2 x 2
# df_name data
# <chr> <list>
# 1 A <data.frame [450 x 5]>
# 2 B <data.frame [300 x 5]>
版本完全相同的结构,我们需要添加以下内容:
tapply
答案 2 :(得分:1)
我将使用unnest
和group_split
:
df %>% unnest(data) %>% group_split(df_name)
# [[1]]
# # A tibble: 450 x 6
# df_name Sepal.Length Sepal.Width Petal.Length Petal.Width Species
# <chr> <dbl> <dbl> <dbl> <dbl> <fct>
# 1 A 5.1 3.5 1.4 0.2 setosa
# 2 A 4.9 3 1.4 0.2 setosa
# 3 A 4.7 3.2 1.3 0.2 setosa
# 4 A 4.6 3.1 1.5 0.2 setosa
# 5 A 5 3.6 1.4 0.2 setosa
# 6 A 5.4 3.9 1.7 0.4 setosa
# 7 A 4.6 3.4 1.4 0.3 setosa
# 8 A 5 3.4 1.5 0.2 setosa
# 9 A 4.4 2.9 1.4 0.2 setosa
# 10 A 4.9 3.1 1.5 0.1 setosa
# # ... with 440 more rows
#
# [[2]]
# # A tibble: 300 x 6
# df_name Sepal.Length Sepal.Width Petal.Length Petal.Width Species
# <chr> <dbl> <dbl> <dbl> <dbl> <fct>
# 1 B 5.1 3.5 1.4 0.2 setosa
# 2 B 4.9 3 1.4 0.2 setosa
# 3 B 4.7 3.2 1.3 0.2 setosa
# 4 B 4.6 3.1 1.5 0.2 setosa
# 5 B 5 3.6 1.4 0.2 setosa
# 6 B 5.4 3.9 1.7 0.4 setosa
# 7 B 4.6 3.4 1.4 0.3 setosa
# 8 B 5 3.4 1.5 0.2 setosa
# 9 B 4.4 2.9 1.4 0.2 setosa
# 10 B 4.9 3.1 1.5 0.1 setosa
# # ... with 290 more rows