有可能将复杂的json转换为pandas数据框吗?

时间:2019-03-26 11:31:40

标签: python json

我知道到目前为止有很多类似的问题,但是对不起,我只是没有一个正确的主意。

我想将复杂的json转换为干净的pandas数据框。

到目前为止,我的代码:

with open('JSON_Input.json', 'r') as json_file:
    json_data = json.load(json_file)
    json_data = json.loads(json_data)

这将创建以下复杂的嵌套json对象:

json_data 

{'time': 0,
 'day1': [{'time': 0,
   'coordinates': [{'x': 1202.5, 'y': 486, 'time': 3276},
    {'x': 1162.5, 'y': 484, 'time': 3331},
    {'x': 742.5, 'y': 492.5, 'time': 3487},
    {'x': 673.5, 'y': 501.5, 'time': 3514},
    {'x': 636, 'y': 508.5, 'time': 3539}]},
  {'path': 'path1',
   'time': 3558,
   'coordinates': [{'x': 1237, 'y': 173, 'time': 5437},
    {'x': 1240, 'y': 182, 'time': 5601},
    {'x': 1260, 'y': 161, 'time': 7289},
    {'x': 1263, 'y': 165, 'time': 7465},
    {'x': 1482, 'y': 114.5, 'time': 8072},
    {'x': 1482, 'y': 114, 'time': 8197},
    {'x': 1482, 'y': 126.5, 'time': 9539}]},
  {'path': 'path2',
   'time': 23620,
   'coordinates': [{'x': 227.5, 'y': 420, 'time': 25228},
    {'x': 235, 'y': 418, 'time': 25426}]},
  {'path': 'path3',
   'time': 35891,
   'coordinates': [{'x': 681.5, 'y': 431, 'time': 36648},
    {'x': 704.5, 'y': 427.5, 'time': 36661},
    {'x': 874.5, 'y': 420.5, 'time': 36714},
    {'x': 909.5, 'y': 422, 'time': 36734}]}],
 'day2': {'path': 'path4',
  'time': 36743,
  'coordinates': [{'x': 600, 'y': 622.5, 'time': 37390},
   {'x': 603, 'y': 594.5, 'time': 37448},
   {'x': 605, 'y': 541.5, 'time': 37478},
   {'x': 608.5, 'y': 481.5, 'time': 37495},
   {'x': 620, 'y': 369, 'time': 37530},
   {'x': 624.5, 'y': 329, 'time': 37547},
   {'x': 636, 'y': 366, 'time': 38043}]}}

现在如何从这个json文件中获取干净的数据框?

1 个答案:

答案 0 :(得分:0)

这很棘手。您最终将得到很多null,而且我也不完全知道最终datframe的外观。但这也许可以使您朝正确的方向前进:

jsonObj = {'time': 0,
 'day1': [{'time': 0,
   'coordinates': [{'x': 1202.5, 'y': 486, 'time': 3276},
    {'x': 1162.5, 'y': 484, 'time': 3331},
    {'x': 742.5, 'y': 492.5, 'time': 3487},
    {'x': 673.5, 'y': 501.5, 'time': 3514},
    {'x': 636, 'y': 508.5, 'time': 3539}]},
  {'path': 'path1',
   'time': 3558,
   'coordinates': [{'x': 1237, 'y': 173, 'time': 5437},
    {'x': 1240, 'y': 182, 'time': 5601},
    {'x': 1260, 'y': 161, 'time': 7289},
    {'x': 1263, 'y': 165, 'time': 7465},
    {'x': 1482, 'y': 114.5, 'time': 8072},
    {'x': 1482, 'y': 114, 'time': 8197},
    {'x': 1482, 'y': 126.5, 'time': 9539}]},
  {'path': 'path2',
   'time': 23620,
   'coordinates': [{'x': 227.5, 'y': 420, 'time': 25228},
    {'x': 235, 'y': 418, 'time': 25426}]},
  {'path': 'path3',
   'time': 35891,
   'coordinates': [{'x': 681.5, 'y': 431, 'time': 36648},
    {'x': 704.5, 'y': 427.5, 'time': 36661},
    {'x': 874.5, 'y': 420.5, 'time': 36714},
    {'x': 909.5, 'y': 422, 'time': 36734}]}],
 'day2': {'path': 'path4',
  'time': 36743,
  'coordinates': [{'x': 600, 'y': 622.5, 'time': 37390},
   {'x': 603, 'y': 594.5, 'time': 37448},
   {'x': 605, 'y': 541.5, 'time': 37478},
   {'x': 608.5, 'y': 481.5, 'time': 37495},
   {'x': 620, 'y': 369, 'time': 37530},
   {'x': 624.5, 'y': 329, 'time': 37547},
   {'x': 636, 'y': 366, 'time': 38043}]}}










import pandas as pd
import re


def flatten_json(y):
    out = {}

    def flatten(x, name=''):
        if type(x) is dict:
            for a in x:
                flatten(x[a], name + a + '_')
        elif type(x) is list:
            i = 0
            for a in x:
                flatten(a, name + str(i) + '_')
                i += 1
        else:
            out[name[:-1]] = x

    flatten(y)
    return out

results = pd.DataFrame()
for k in jsonObj:

    flat = flatten_json(jsonObj[k])                      


    temp_df = pd.DataFrame()
    special_cols = []

    columns_list = list(flat.keys())
    for item in columns_list:
        try:
            row_idx = re.findall(r'\_(\d+)\_', item )[0]
        except:
            special_cols.append(item)
            continue
        column = re.findall(r'\_\d+\_(.*)', item )[0]
        column = column.replace('_', '')

        row_idx = int(row_idx)
        value = flat[item]

        temp_df.loc[row_idx, column] = value

    for item in special_cols:
        temp_df[item] = flat[item]

    if 'day' in k:
        temp_df['day'] = k
    results = results.append(temp_df).reset_index(drop=True)

results = results.dropna(axis=1, how='all')