我目前正在处理这样的数据框:
words: other: category:
hello, jim, you, you , jim val1 movie
it, seems, bye, limb, pat, paddy val2 movie
how, are, you, are , kim val1 television
......
......
我正在尝试计算“类别”列中每个类别的前10个最频繁出现的单词和双字母组。虽然,我想在将最常见的二元组归为各自的类别之前对其进行计算。
我的问题是,如果我按类别分组,然后获得最常出现的前10个双字母组,则第一行的单词将与第二行合并。
二元组应如下所示:
(hello, jim), (jim, you), (you, you), (you, jim)
(it, seems), (seems,bye), (bye, limb), (limb, pat), (pat, paddy)
(how, are), (are, you), (you, are), (are, kim)
如果我在获得二元组之前分组,那么二元组将是:
(hello, jim), (jim, you), (you, you), (you, jim), (jim, it), (it, seems), (seems,bye), (bye, limb), (limb, pat), (pat, paddy)
(how, are), (are, you), (you, are), (are, kim)
使用熊猫做到这一点的最佳方法是什么?
很抱歉,如果我的问题不必要地复杂,我只想包括所有细节。请让我知道任何问题。
答案 0 :(得分:0)
示例数据框:
words other category
0 hello, jim, you, you , jim val1 movie
1 it, seems, bye, limb, pat, hello, jim val2 movie
2 how, are, you, are , kim val1 television
这是一种使用Pandas和.iterrows()
计算二元数的方法:
bigrams = []
for idx, row in df.iterrows():
lst = row['words'].split(',')
bigrams.append([(lst[x].strip(), lst[x+1].strip()) for x in range(len(lst)-1)])
print(bigrams)
[[('hello', 'jim'), ('jim', 'you'), ('you', 'you'), ('you', 'jim')],
[('it', 'seems'), ('seems', 'bye'), ('bye', 'limb'), ('limb', 'pat'), ('pat', 'hello'), ('hello', 'jim')],
[('how', 'are'), ('are', 'you'), ('you', 'are'), ('are', 'kim')]]
这是使用Pandas和.apply
的更有效的方法:
def bigram(row):
lst = row['words'].split(', ')
return [(lst[x].strip(), lst[x+1].strip()) for x in range(len(lst)-1)]
bigrams = df.apply(lambda row: bigram(row), axis=1)
print(bigrams.tolist())
[[('hello', 'jim'), ('jim', 'you'), ('you', 'you'), ('you', 'jim')],
[('it', 'seems'), ('seems', 'bye'), ('bye', 'limb'), ('limb', 'pat'), ('pat', 'hello'), ('hello', 'jim')],
[('how', 'are'), ('are', 'you'), ('you', 'are'), ('are', 'kim')]]
然后您可以按类别对数据进行分组,并找到最常见的十大二元组。这是一个按类别查找最常见的二元组的示例:
df['bigrams'] = bigrams
df2 = df.groupby('category').agg({'bigrams': 'sum'})
# Compute the most frequent bigrams by category
from collections import Counter
df3 = df2.bigrams.apply(lambda row: Counter(row)).to_frame()
按类别订购的双语法例频率字典:
print(df3)
bigrams
category
movie {('hello', 'jim'): 2, ('jim', 'you'): 1, ('you...
television {('how', 'are'): 1, ('are', 'you'): 1, ('you',...
# Filter to just the top 3 most frequent bigrams (or 10 if you have enough data)
df3.bigrams.apply(lambda row: list(row)[0:3])
category
movie [(hello, jim), (jim, you), (you, you)]
television [(how, are), (are, you), (you, are)]
Name: bigrams, dtype: object