是处理数据帧和循环的新手。在python或R中寻找查询的答案。我有一个数据框,其结构与以下类似。
TP1.v1 | TP1.v2 | TP1.v3 | TP2.v1 | TP2.v2 | TP2.v3 |... TPn.v1
Gene A| 7 |6 |7 |6 |4 |1 |... 9
Gene B| 3 |4 |4 |4 |5 |3 |... 3
Gene n| 6 |1 |1 |5 |7 |7 |... 8
我想为所有TP1,TP2等创建一个新的数据帧。每个TP(时间点)具有3个与之关联的列。理想情况下,我还想使用循环来执行此操作,因为我有多个具有相似结构的文件。最后,我希望循环为每个新数据帧赋予一个新的唯一名称。
我已经能够在R中完成此任务而无需使用循环。简单地重复使用基本功能来操纵数据框。但这很慢且很费力,因此想循环执行。
理想的输出将是n个唯一命名的数据帧,每个数据帧具有3列,并且每个字段保留原始数据帧中的行名和列名。
下面,我添加了R中dput(head(df))的输出。
structure(list(D1.log2fc = c(-0.453086, -0.1828075, 0.105551500000001,
0.368134000000001, 0.194800000000001, -0.327664499999999), D1.AveExp = c(4.9001385,
5.59887075, 9.35607416666667, 9.466082, 9.28132575, 5.43070783333333
), D1.adjPval = c(0.158162310733078, 0.680539779380169, 0.798318133631351,
0.368809197240543, 0.588741274410125, 0.363696882398466), D3.log2fc = c(-0.5979695,
-0.510921500000001, 0.544158999999999, 0.354766, 0.631701999999999,
-0.365363499999998), D3.AveExp = c(4.9001385, 5.59887075, 9.35607416666667,
9.466082, 9.28132575, 5.43070783333333), D3.adjPval = c(0.0354796268783931,
0.104426887750224, 0.0342979093938487, 0.318289098430963, 0.0318404713171763,
0.231275103023615), D6.log2fc = c(-0.349413, -0.854375500000001,
0.7416965, 0.5901225, 0.821465500000002, -0.578061499999999),
D6.AveExp = c(4.9001385, 5.59887075, 9.35607416666667, 9.466082,
9.28132575, 5.43070783333333), D6.adjPval = c(0.151181193217808,
0.00788722811936, 0.00487109163210043, 0.0635131764099792,
0.00547087529420614, 0.0423872835135151), D10.log2fc = c(-0.528707499999999,
-0.431807000000002, 0.454508000000001, 0.628860999999999,
0.379918500000002, -0.195571999999999), D10.AveExp = c(4.9001385,
5.59887075, 9.35607416666667, 9.466082, 9.28132575, 5.43070783333333
), D10.adjPval = c(0.0360033103086792, 0.125511404231851,
0.0445352483558512, 0.0499786423872913, 0.126969394135026,
0.517590415583245), D14.log2fc = c(-0.517372, -0.379950000000001,
0.596869, 0.7255935, 0.6545535, -0.205755499999999), D14.AveExp = c(4.9001385,
5.59887075, 9.35607416666667, 9.466082, 9.28132575, 5.43070783333333
), D14.adjPval = c(0.039311630129941, 0.172677856404577,
0.0124695746689562, 0.0265985268105264, 0.0152333310246979,
0.452405710914221)), row.names = c("hsa-let-7a-2", "hsa-let-7b",
"hsa-let-7d", "hsa-let-7e", "hsa-let-7f", "hsa-let-7f1"), class = "data.frame")
答案 0 :(得分:1)
不确定唯一命名的DataFrames是什么意思。这将创建一个包含每个DataFrame的字典。希望对您有所帮助。
import pandas as pd
import numpy as np
# Sample Data
df = pd.DataFrame(np.random.rand(50,3*10),
columns = ['TP%d.v%d'%(i, j) for i in range(1,11) for j in range(1,4)])
# Construct dictionary:
dd = {}
for name in df.columns.str.split('.').str[0].unique():
dd[name] = df[df.columns[df.columns.str.startswith(name)]].copy()
如果您想使用多索引DataFrames。以下解决方案将简单地重新定义当前DataFrame的列。处理这些问题可能会更加复杂,但是效率更高:
# MultiIndex Solution
df.columns = df.columns.str.split('.', expand=True)
答案 1 :(得分:1)
在R
# assuming you know the prefix and how many time points you have (e.g. D and 5)
tp <- c(1, 3, 6, 10, 14)
prefix <- "D"
# for loop
for (i in tp) {
common <- paste0(prefix, i) # create common name e.g. D1, D3, D6 etc.
# assign columns to its unique df
assign(common, df[, grep(paste0(common, "\\."), colnames(df), ignore.case = T)])
}
# using lapply (could be a bit faster than for loop)
lapply(tp, function(i) {
common <- paste0(prefix, i) # create common name e.g. D1, D3, D6 etc.
# assign columns to its unique df
assign(common, df[, grep(paste0(common, "\\."), colnames(df), ignore.case = T)], envir = .GlobalEnv)
})
编辑:lapply
实际上比for
循环快得多。这是microbenchmark
个结果
Unit: microseconds
expr min lq mean median uq max neval
for.loop 3045.718 3167.800 3549.2943 3284.6260 3424.485 79971.27 1000
lapply.call 170.647 184.086 204.4465 192.4345 200.538 4123.52 1000