我一直在尝试运行Resnet-50 TF模型文件(PB文件/ TF服务文件)并尝试了解输出。来自https://github.com/tensorflow/models/tree/master/official/resnet
的模型文件模型输出为这种形状
saved_model_cli show --dir'resnet_v2_fp32_savedmodel_NCHW / 1538687196'-全部
MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:
signature_def['predict']:
The given SavedModel SignatureDef contains the following input(s):
inputs['input'] tensor_info:
dtype: DT_FLOAT
shape: (64, 224, 224, 3)
name: input_tensor:0
The given SavedModel SignatureDef contains the following output(s):
outputs['classes'] tensor_info:
dtype: DT_INT64
shape: (64)
name: ArgMax:0
outputs['probabilities'] tensor_info:
dtype: DT_FLOAT
shape: (64, 1001)
name: softmax_tensor:0
Method name is: tensorflow/serving/predict
signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['input'] tensor_info:
dtype: DT_FLOAT
shape: (64, 224, 224, 3)
name: input_tensor:0
The given SavedModel SignatureDef contains the following output(s):
outputs['classes'] tensor_info:
dtype: DT_INT64
shape: (64)
name: ArgMax:0
outputs['probabilities'] tensor_info:
dtype: DT_FLOAT
shape: (64, 1001)
name: softmax_tensor:0
Method name is: tensorflow/serving/predict
我能够通过TF服务为该模型提供服务,并获得输出(client gist);但是,如何获得该类,人类可读的标签
#input
in tf shape', (32, 224, 224, 3)) #input 32 batches of 224*224 image
#ouput
('scores output', (32, 1001))# do we need to do softmax of this to get calls ?
('labels output', (32,)) # or do we get the classes here
#sample output printed
('Label', 535, ' Score ', array([1.7646320e-04, 3.4607644e-04, 2.8857682e-04, ..., 8.6246226e-05,
3.6872298e-04, 7.6855574e-04], dtype=float32))