如何将多个图像从url导入tensorflow?

时间:2019-03-24 12:49:08

标签: python tensorflow keras

我有一个包含图像网址和标签的json文件。我正在尝试使用tf.keras.utils.get_file()加载图像。这样,我一次只能下载一个图像。我在URL列表中添加了所有URL。然后,我尝试使用tf.keras.utils.get_file()将图像从URL加载到新列表。为什么这不起作用? Json文件结构

{"ID":"-","DataRow ID":"-","Labeled Data":"url is here!","Label":{"dorsaalinen kallistuskulma":[{"geometry":{"x":217,"y":269}},{"geometry":{"x":243,"y":263}}]},"Created By":"-","Project Name":"syvärit (testi)","Created At":"","Seconds to Label":42.286,"External ID":"image5 (2).png","Agreement":null,"Dataset Name":"ranne yhdistelmä","Reviews":[],"View Label":"-"},{"ID":"-","DataRow ID":"-","Labeled Data":"url is here","Label":{"dorsaalinen kallistuskulma":[{"geometry":{"x":217,"y":266}},{"geometry":{"x":243,"y":263}}]},"Created By":"-","Project Name":"syvärit (testi)","Created At":"","Seconds to Label":16.801,"External ID":"image5.png","Agreement":null,"Dataset Name":"ranne yhdistelmä","Reviews":[],"View Label":""}]

代码

    import json
    import tensorflow as tf

    with open(filename) as f:
        data = json.load(f)

    # loading json data (url's)to list
    url = []
    for object in data:
        url.append(object['Labeled Data'])

    # loading the images
    pictures =[]
    for i in url:
        pictures = tf.keras.utils.get_file('fname', i, untar=True)
        # loads only one file and if I use pictures.append(tf.keras.utils.get_file) it doesn't download anything.

1 个答案:

答案 0 :(得分:0)

您可以尝试使用gapcv。它是用于预处理ML数据的框架。运作方式如下:

安装gapcv

pip install gapcv

Images导入vision

from gapcv.vision import Images

自从gapcv读取json以来,对json文件进行了一些修复:

请参见documentation

[
    {'label': 'cat', 'image': 'http://example.com/c1.jpg'},
    {'label': 'dog', 'image': 'http://example.com/d1.jpg'},
    ...
]

运行此命令以创建一个new_label键,并将标签名称提取到嵌套字典中

for image in json_file:
    for key in list(image):
        if key == 'Label':
            image['new_label'] = list(image['Label'].keys())[0]

您将得到类似的东西:

'new_label': 'dorsaalinen kallistuskulma'

保存新的json_file

import json
with open('data.json', 'w') as outfile:  
    json.dump(json_file, outfile)

现在我们可以使用gapcv从url下载和预处理图像了:

images = Images('my_new_file', 'data.json', config=['image_key=Labeled Data', 'label_key=new_label', 'store', 'resize=(224,224)'])

这将创建一个my_new_file.h5文件,随时可以适合您的模型:)

您还可以使用生成器并将其用于keras:

# this will stream the data from the `my_new_file.h5` file so you don't overload your memory
images = Images(config=['stream'], augment=['flip=both', 'edge', 'zoom=0.3', 'denoise']) # augment if it's needed if not use just Images(config=['stream']), norm 1.0/255.0 by default.
images.load('my_new_file')

#Metadata

print('images train')
print('Time to load data set:', images.elapsed)
print('Number of images in data set:', images.count)
print('classes:', images.classes)

发电机:

images.split = 0.2
images.minibatch = 32
gap_generator = images.minibatch
X_test, Y_test = images.test

适合keras模型:

model.fit_generator(generator=gap_generator,
                    validation_data=(X_test, Y_test),
                    epochs=epochs,
                    steps_per_epoch=steps_per_epoch)

为什么要使用gapcv?好了,模型拟合速度比ImageDataGenerator()快两倍:)

colab中的示例