在张量流中tf.sets.set_intersection
的操作中用备用张量来容纳一个恒定张量时,失败了。
import tensorflow as tf
sess = tf.Session()
a = tf.add(tf.range(10), tf.cast(tf.ones([10]), dtype=tf.int32))
b = tf.constant([0, 1, 1, 0, 0, 1, 1, 0, 0, 1])
# This set appears to be sorted, but that is not documented behavior.
s = tf.sets.set_intersection(a[None,:], b[None, :])
s = tf.concat([a, tf.convert_to_tensor(s)], axis=0)
fsort = tf.contrib.framework.sort(s.values)
with tf.Session() as sess:
print(type(s))
print(sess.run(s).values)
print(sess.run(fsort))
错误如下:
TypeError Traceback (most recent call last)
/data00/tiger/jupyterhub_deploy/venv/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py in make_tensor_proto(values, dtype, shape, verify_shape)
526 try:
--> 527 str_values = [compat.as_bytes(x) for x in proto_values]
528 except TypeError:
/data00/tiger/jupyterhub_deploy/venv/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py in <listcomp>(.0)
526 try:
--> 527 str_values = [compat.as_bytes(x) for x in proto_values]
528 except TypeError:
/data00/tiger/jupyterhub_deploy/venv/lib/python3.6/site-packages/tensorflow/python/util/compat.py in as_bytes(bytes_or_text, encoding)
60 raise TypeError('Expected binary or unicode string, got %r' %
---> 61 (bytes_or_text,))
62
TypeError: Expected binary or unicode string, got <tensorflow.python.framework.sparse_tensor.SparseTensor object at 0x7f9da1a8bc88>
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
<ipython-input-107-a3e76f2038b5> in <module>
7 # This set appears to be sorted, but that is not documented behavior.
8 s = tf.sets.set_intersection(a[None,:], b[None, :])
----> 9 s = tf.concat([a, tf.convert_to_tensor(s)], axis=0)
10 fsort = tf.contrib.framework.sort(s.values)
11
/data00/tiger/jupyterhub_deploy/venv/lib/python3.6/site-packages/tensorflow/python/framework/ops.py in convert_to_tensor(value, dtype, name, preferred_dtype)
1048 name=name,
1049 preferred_dtype=preferred_dtype,
-> 1050 as_ref=False)
1051
1052
/data00/tiger/jupyterhub_deploy/venv/lib/python3.6/site-packages/tensorflow/python/framework/ops.py in internal_convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, ctx)
1144
1145 if ret is None:
-> 1146 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
1147
1148 if ret is NotImplemented:
/data00/tiger/jupyterhub_deploy/venv/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py in _constant_tensor_conversion_function(v, dtype, name, as_ref)
227 as_ref=False):
228 _ = as_ref
--> 229 return constant(v, dtype=dtype, name=name)
230
231
/data00/tiger/jupyterhub_deploy/venv/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py in constant(value, dtype, shape, name, verify_shape)
206 tensor_value.tensor.CopyFrom(
207 tensor_util.make_tensor_proto(
--> 208 value, dtype=dtype, shape=shape, verify_shape=verify_shape))
209 dtype_value = attr_value_pb2.AttrValue(type=tensor_value.tensor.dtype)
210 const_tensor = g.create_op(
/data00/tiger/jupyterhub_deploy/venv/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py in make_tensor_proto(values, dtype, shape, verify_shape)
529 raise TypeError("Failed to convert object of type %s to Tensor. "
530 "Contents: %s. Consider casting elements to a "
--> 531 "supported type." % (type(values), values))
532 tensor_proto.string_val.extend(str_values)
533 return tensor_proto
TypeError: Failed to convert object of type <class 'tensorflow.python.framework.sparse_tensor.SparseTensor'> to Tensor. Contents: SparseTensor(indices=Tensor("DenseToDenseSetOperation_17:0", shape=(?, 2), dtype=int64), values=Tensor("DenseToDenseSetOperation_17:1", shape=(?,), dtype=int32), dense_shape=Tensor("DenseToDenseSetOperation_17:2", shape=(2,), dtype=int64)). Consider casting elements to a supported type.
答案 0 :(得分:0)
使用tf.convert_to_tensor(s)
代替使用tf.sparse.to_dense(s)
。另外,我会将整个代码重写为:
tf.reset_default_graph()
a = tf.add(tf.range(10), tf.cast(tf.ones([10]), dtype=tf.int32))
b = tf.constant([0, 1, 1, 0, 0, 1, 1, 0, 0, 1])
# This set appears to be sorted, but that is not documented behavior.
s_sparse = tf.sets.set_intersection(a[None,:], b[None, :])
s_dense = tf.squeeze(tf.sparse.to_dense(s_sparse), axis=0)
s = tf.concat([a, s_dense], axis=0)
fsort = tf.contrib.framework.sort(s)
with tf.Session() as sess:
print(type(s))
print(sess.run(s))
print(sess.run(fsort))