深度学习open-cv对象跟踪错误

时间:2019-03-23 15:29:19

标签: python opencv keras

我训练了用于手模型的深度学习分类,并与opencv的对象跟踪代码一起使用。但是,我在扩张阶段遇到错误。没有说彩色框,掩码阈值全为零数组。我可以存储框架,但在跑步过程中无法显示正确的框架,只能显示黑色背景。

我试图打印一些调试日志。

Date : 7th Jan 2018

Author : xiaochus
Email : xiaochus@live.cn
Affiliation : School of Computer Science and Communication Engineering
                - Jiangsu University - China

License : MIT

Status : Under Active Development

Description :
OpenCV 3 & Keras implementation of the vehicle tracking.
"""

import sys
import copy
import argparse
import cv2
import numpy as np
from keras.models import load_model
import os

from utils.entity import Entity


def main(argv):
    parser = argparse.ArgumentParser()
    # Required arguments.
    parser.add_argument(
        "--file",
        help="Input video file.",
    )
    # Optional arguments.
    parser.add_argument(
        "--iou",
        default=0.2,
        help="threshold for tracking",
    )
    args = parser.parse_args()
    track(args.file, args.iou)


def overlap(box1, box2):
    """
    Check the overlap of two boxes
    """
    endx = max(box1[0] + box1[2], box2[0] + box2[2])
    startx = min(box1[0], box2[0])
    width = box1[2] + box2[2] - (endx - startx)

    endy = max(box1[1] + box1[3], box2[1] + box2[3])
    starty = min(box1[1], box2[1])
    height = box1[3] + box2[3] - (endy - starty)

    if (width <= 0 or height <= 0):
        return 0
    else:
        Area = width * height
        Area1 = box1[2] * box1[3]
        Area2 = box2[2] * box2[3]
        ratio = Area / (Area1 + Area2 - Area)

        return ratio


def track(video, iou):
    print(video)
    print(os.getcwd())
    print(os.path.join(os.getcwd(), video))
    camera = cv2.VideoCapture(video)
    print(type(camera))
    res, frame = camera.read()
    y_size = frame.shape[0]
    x_size = frame.shape[1]


    # Load CNN classification model
    model = load_model('brightness3ch.h5')
    # Definition of MOG2 Background Subtraction
    bs = cv2.createBackgroundSubtractorMOG2(detectShadows=True)
    history = 20
    frames = 0
    counter = 0

    track_list = []
    cv2.namedWindow("detection", cv2.WINDOW_NORMAL)
    while True:
        res, frame = camera.read()
        y_size = frame.shape[0]
        x_size = frame.shape[1]
        cv2.imwrite("result.png", frame)
        if res is False:
            break
        # Train the MOG2 with first frames frame
        fg_mask = bs.apply(frame)

        if frames < history:
            frames += 1
            continue
        # Expansion and denoising the original frame
        th = cv2.threshold(fg_mask.copy(), 244, 255, cv2.THRESH_BINARY)[1]
        print(th)
        th = cv2.erode(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)), iterations=2)
        dilated = cv2.dilate(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (8, 3)), iterations=2)
        image, contours, hier = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

        # Check the bouding boxs
        for c in contours:
            x, y, w, h = cv2.boundingRect(c)
            if cv2.contourArea(c) > 3000:
                # Extract roi
                img = frame[y: y + h, x: x + w, :]
                rimg = cv2.resize(img, (64, 64), interpolation=cv2.INTER_CUBIC)
                image_data = np.array(rimg, dtype='float32')
                image_data /= 255.
                roi = np.expand_dims(image_data, axis=0)
                flag = model.predict(roi)
                print(flag)

                if flag[0][0] >= 0 and flag[0][0] <=9:
                    e = Entity(counter, (x, y, w, h), frame)

                    # Exclude existing targets in the tracking list
                    if track_list:
                        count = 0
                        num = len(track_list)
                        for p in track_list:
                            if overlap((x, y, w, h), p.windows) < iou:
                                count += 1
                        if count == num:
                            track_list.append(e)
                    else:
                        track_list.append(e)
                    counter += 1

        # Check and update goals
        if track_list:
            tlist = copy.copy(track_list)
            for e in tlist:
                x, y = e.center
                if 10 < x < x_size - 10 and 10 < y < y_size - 10:
                    e.update(frame)
                else:
                    track_list.remove(e)
        frames += 1
        cv2.imshow("detection", frame)
        if cv2.waitKey(110) & 0xff == 27:
            break
    camera.release()


if __name__ == '__main__':
    main(sys.argv)

错误日志:

  

D:\ PythonSpace \ Hand_Tracking> python track_finger.py --file car.flv   使用TensorFlow后端car.flv D:\ PythonSpace \ Hand_Tracking   D:\ PythonSpace \ Hand_Tracking \ car.flv   2019-03-22 11:51:22.024142:我   tensorflow / core / platform / cpu_feature_guard.cc:141]您的CPU支持   TensorFlow二进制文件未编译使用的指令:AVX2   C:\ Python \ Python37 \ lib \ site-packages \ keras \ engine \ saving.py:292:   UserWarning:在保存文件中找不到训练配置:模型   未编译。手动编译。 warnings.warn('不接受任何培训   在保存文件中找到配置:'[[0 0 0 ... 0 0 0] [0 0 0 ... 0 0   0] [0 0 0 ... 0 0 0] ... [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] [0 0 0   ... 0 0 0]]追溯(最近一次通话):文件“ track_finger.py”,   如果name =='main',则输入第157行:文件“ track_finger.py”,输入44   主参数= parser.parse_args()文件“ track_finger.py”,第109行,在   磁道膨胀= cv2.dilate(th,   cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(8,3)),迭代次数= 2)   ValueError:没有足够的值可解压缩(预期3,得到2)

0 个答案:

没有答案