多个反应式过滤器和Updateselectinputs出现问题-奇怪的行为

时间:2019-03-22 23:33:21

标签: r shiny shiny-reactivity

我正在努力通过连续通过多个过滤器来解决问题,有时结果不是预期的。在下面的示例中,有7只鹿,2只熊,1只美洲狮,1只海狸,1只臭鼬,1只麋鹿和3只麋鹿。当您选择一种或多种种类时,有时通过过滤器的行数与应该的数量不相同。

例如。当我选择Bear,Beaver和Cougar时,它将产生4行的数据集,但是,在显示行数的textoutput中,将显示nrow = 3。添加更多选择有时会使其余的过滤器通过,有时则不会。有时,在选择Deer时(您希望获得7行数据),仅传递3行。

看看下面的可复制示例。

服务器:

library(shiny)
library(dplyr)

shinyServer(function(input, output, session, clientData) {


  Accident.Date <- as.Date(c("2018-06-04", "2018-06-05", "2018-06-06", "2018-06-07", "2018-06-08", "2018-06-09", "2018-06-10", "2018-06-11", "2018-06-12", "2018-06-13", "2018-06-14", "2018-06-15", "2018-06-16", "2018-06-17", "2018-06-18", "2018-07-18"))
  Time.of.Kill <- as.character(c("DAWN", "DAY", "DARK", "UNKNOWN", "DUSK", "DAY", "DAY", "DAWN", "DAY", "DARK", "UNKNOWN", "DUSK", "DARK", "DUSK", "DARK", "DAY"))
  Sex <- as.character(c("MALE", "MALE", "FEMALE", "MALE", "FEMALE", "FEMALE", "MALE", "MALE", "FEMALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "FEMALE", "FEMALE"))
  Age <- as.character(c("ADULT", "YOUNG", "UNKNOWN", "ADULT", "UNKNOWN", "ADULT", "YOUNG", "YOUNG", "ADULT", "ADULT", "ADULT", "YOUNG", "ADULT", "YOUNG", "YOUNG", "ADULT"))
  Species <- as.character(c("Deer", "Deer", "Deer", "Bear", "Deer", "Cougar", "Bear", "Beaver", "Deer", "Skunk", "Moose", "Deer", "Deer", "Elk", "Elk", "Elk"))
  Year <- as.numeric(c("0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"))


  data <- data.frame(Accident.Date, Time.of.Kill, Sex, Age, Species, stringsAsFactors = FALSE)
  data <- data %>% mutate(Data.Set = "Current")

  #A set of reactive filters. Only data that has passed all filters is passed to the map, graph, datatable etc. **Order goes datacheck > yearcheck > speccheck > sexcheck > timecheck > agecheck > indaterange


  bindata <- reactive({
    filter(data, Data.Set %in% input$datacheck)
  })

  yrdata <- reactive({
    filter(bindata(), Year %in% input$yearcheck)
  })

  specdata <- reactive({
    subset(yrdata(), Species %in% input$speccheck)
  })

  sexdata <- reactive({
    filter(specdata(), Sex %in% input$sexcheck)
  })

  timedata <- reactive({
    filter(sexdata(), Time.of.Kill %in% input$timecheck)
  })

  agedata <- reactive({
    filter(timedata(), Age %in% input$agecheck)
  })

  #Does the date range filter. Selects min and max from the two inputs of the observed indaterange filter.

  data1 <- reactive({ filter(agedata(),
                             Accident.Date >= input$inDateRange[[1]],
                             Accident.Date <= input$inDateRange[[2]])
  })

  #If statement for choosing between current and historical datasets. If current is selected, year is set to 0 and the selection box is hidden.

  observe({ if (input$datacheck == 'Current')
    updateSelectInput(session, "yearcheck", choices = c("0"), selected = c("0"))
    else
      updateSelectizeInput(session, "yearcheck", choices = sort(unique(bindata()$Year), decreasing = TRUE), server=TRUE)

  })

  observe({

    req((input$datacheck == 'Historical'))

    updateSelectizeInput(session, "speccheck", choices = sort(unique(yrdata()$Species)), server=TRUE)

  })


  #Creates the observed Species

  observeEvent(input$yearcheck, {

    x  <- input$yearcheck
    if (is.null(x))
      x <- character(0)

    updateSelectizeInput(session, "speccheck", choices = sort(unique(yrdata()$Species)), server=TRUE)

  })


  #Creates the observed Sex

  observeEvent(input$speccheck, {

    x  <- input$speccheck
    if (is.null(x))
      x <- character(0)

    updateCheckboxGroupInput(session, inputId = "sexcheck",
                             choices = unique(specdata()$Sex),
                             selected = unique(specdata()$Sex),
                             inline = TRUE)
  })


  #Creates the observed Time

  observeEvent(input$sexcheck,{

    x  <- input$sexcheck
    if (is.null(x))
      x <- character(0)

    updateCheckboxGroupInput(session, inputId = "timecheck",
                             choices = unique(sexdata()$Time.of.Kill),
                             selected = unique(sexdata()$Time.of.Kill),
                             inline = TRUE)
  })

  #Creates the observed Age

  observeEvent(input$timecheck,{

    x  <- input$timecheck
    if (is.null(x))
      x <- character(0)

    updateCheckboxGroupInput(session, inputId = "agecheck",
                             choices = unique(timedata()$Age),
                             selected = unique(timedata()$Age),
                             inline = TRUE)
  })

  #Creates the observed dates and suppresses warnings from the min max

  observeEvent(input$agecheck, {

    x  <- input$agecheck
    if (is.null(x))
      x <- character(0)

    #And update the date range values to match those of the dataset

    updateDateRangeInput(
      session = session,
      inputId = "inDateRange",
      start = min(suppressWarnings(agedata()$Accident.Date)),
      end = max(suppressWarnings(agedata()$Accident.Date))
    )
  })


  output$txt <-  renderText({nrow(data1())})


  })

ui:

navbarPage("Test", id="nav",

           tabPanel("Map",

                        absolutePanel(id = "controls", class = "panel panel-default", fixed = TRUE,
                                      draggable = FALSE, top = 200, left = 5, right = "auto", bottom = "auto",
                                      width = "auto", height = "auto",


                                      radioButtons("datacheck", label = tags$div( HTML("<b>Dataset</b>")),
                                                   choices = c("Current" = "Current", "Historical" = "Historical"),
                                                   selected = c("Current"), inline = TRUE),



                                      conditionalPanel(condition = "input.datacheck != 'Current'",

                                                       #Only displays yearcheck for historical as there is no year column on current dataset. Current dataset has had all year values set to 0.             

                                                       selectizeInput("yearcheck", label = "Select Year (Only Available for Historical)", choices = NULL, options = list(placeholder = 'Select Year:', maxOptions = 40, maxItems = 40))),

                                      selectizeInput("speccheck", h3("Select Species:"), choices = NULL, options = list(placeholder = 'Select Species: (Max 12) ', maxOptions = 36, maxItems = 12)),


                                      conditionalPanel(condition = "input.speccheck >= '1'",
                                                       dateRangeInput("inDateRange", "Date range input:"),

                                                       checkboxGroupInput("sexcheck", label = tags$div( HTML("<b>Sex</b><br>"))),

                                                       checkboxGroupInput("agecheck", label = tags$div( HTML("<b>Age</b><br>"))),

                                                       checkboxGroupInput("timecheck", label = tags$div( HTML("<b>Time of Accident</b><br>")))
                                      ),
                                      verbatimTextOutput("txt")


)))

任何帮助将不胜感激。我已经为此抓了一段时间了。

2 个答案:

答案 0 :(得分:0)

问题与您更新复选框的方式有关。使用您的代码:选择first BEAR,输出看起来不错,但是,如果添加BEAVER,则什么也不会发生。为什么?因为当您的过滤器通过

   timedata <- reactive({
        filter(sexdata(),(Time.of.Kill %in% input$timecheck))
      })

由于BEAR并未将DAWN设为Time.of.Kill,因此BEAVER无法通过此过滤器。

这是我的解决方法:

shinyServer(function(input, output, session, clientData) {


  Accident.Date <- as.Date(c("2018-06-04", "2018-06-05", "2018-06-06", "2018-06-07", "2018-06-08", "2018-06-09", "2018-06-10", "2018-06-11", "2018-06-12", "2018-06-13", "2018-06-14", "2018-06-15", "2018-06-16", "2018-06-17", "2018-06-18", "2018-07-18"))
  Time.of.Kill <- as.character(c("DAWN", "DAY", "DARK", "UNKNOWN", "DUSK", "DAY", "DAY", "DAWN", "DAY", "DARK", "UNKNOWN", "DUSK", "DARK", "DUSK", "DARK", "DAY"))
  Sex <- as.character(c("MALE", "MALE", "FEMALE", "MALE", "FEMALE", "FEMALE", "MALE", "MALE", "FEMALE", "FEMALE", "MALE", "FEMALE", "MALE", "FEMALE", "FEMALE", "FEMALE"))
  Age <- as.character(c("ADULT", "YOUNG", "UNKNOWN", "ADULT", "UNKNOWN", "ADULT", "YOUNG", "YOUNG", "ADULT", "ADULT", "ADULT", "YOUNG", "ADULT", "YOUNG", "YOUNG", "ADULT"))
  Species <- as.character(c("Deer", "Deer", "Deer", "Bear", "Deer", "Cougar", "Bear", "Beaver", "Deer", "Skunk", "Moose", "Deer", "Deer", "Elk", "Elk", "Elk"))
  Year <- as.numeric(c("0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0"))


  data <- data.frame(Accident.Date, Time.of.Kill, Sex, Age, Species, stringsAsFactors = FALSE)
  data <- data %>% mutate(Data.Set = "Current")

  #A set of reactive filters. Only data that has passed all filters is passed to the map, graph, datatable etc. **Order goes datacheck > yearcheck > speccheck > sexcheck > timecheck > agecheck > indaterange


  bindata <- reactive({
    filter(data, Data.Set %in% input$datacheck)
  })

  yrdata <- reactive({
    filter(bindata(), Year %in% input$yearcheck)
  })

  specdata <- reactive({
    sub <- subset(yrdata(), Species %in% input$speccheck)

  })

  sexdata <- reactive({
    filter(specdata(), Sex %in% input$sexcheck)
  })

  timedata <- reactive({
    filter(sexdata(),(Time.of.Kill %in% input$timecheck))
  })

  agedata <- reactive({
    filter(timedata(), Age %in% input$agecheck)
  })

  #Does the date range filter. Selects min and max from the two inputs of the observed indaterange filter.

  data1 <- reactive({ filter(agedata(),
                             Accident.Date >= input$inDateRange[[1]],
                             Accident.Date <= input$inDateRange[[2]])
  })

  #If statement for choosing between current and historical datasets. If current is selected, year is set to 0 and the selection box is hidden.

  observe({ if (input$datacheck == 'Current')
    updateSelectInput(session, "yearcheck", choices = c("0"), selected = c("0"))
    else
      updateSelectizeInput(session, "yearcheck", choices = sort(unique(bindata()$Year), decreasing = TRUE), server=TRUE)

  })

  observe({

    req((input$datacheck == 'Historical'))

    updateSelectizeInput(session, "speccheck", choices = sort(unique(yrdata()$Species)), server=TRUE)

  })


  #Creates the observed Species

  observeEvent(input$yearcheck, {

    x  <- input$yearcheck
    if (is.null(x))
      x <- character(0)

    updateSelectizeInput(session, "speccheck", choices = sort(unique(yrdata()$Species)), server=TRUE)

  })


  #Creates the observed Sex

  observeEvent(input$speccheck, {

    x  <- input$speccheck
    if (is.null(x))
      x <- character(0)

    updateCheckboxGroupInput(session, inputId = "sexcheck",
                             choices = unique(bindata()$Sex),
                             selected = unique(bindata()$Sex),
                             inline = TRUE)
  })


  #Creates the observed Time

  observeEvent(input$sexcheck,{

    x  <- input$sexcheck
    if (is.null(x))
      x <- character(0)

    updateCheckboxGroupInput(session, inputId = "timecheck",
                             choices = unique(bindata()$Time.of.Kill),
                             selected = unique(bindata()$Time.of.Kill),
                             inline = TRUE)
  })

  #Creates the observed Age

  observeEvent(input$timecheck,{

    x  <- input$timecheck
    if (is.null(x))
      x <- character(0)

    updateCheckboxGroupInput(session, inputId = "agecheck",
                             choices = unique(bindata()$Age),
                             selected = unique(bindata()$Age),
                             inline = TRUE)
  })

  #Creates the observed dates and suppresses warnings from the min max

  observeEvent(input$agecheck, {

    x  <- input$agecheck
    if (is.null(x))
      x <- character(0)

    #And update the date range values to match those of the dataset

    updateDateRangeInput(
      session = session,
      inputId = "inDateRange",
      start = min(suppressWarnings(bindata()$Accident.Date)),
      end = max(suppressWarnings(bindata()$Accident.Date))
    )
  })


  output$txt <-  renderText({nrow(data1())})


})

我唯一的更改是使用bindata()更新复选框,这将强制全部出现,因此不会对动物进行预过滤。 因此,我的解决方案是放弃创建动态检查,并从第一次选择动物开始就显示所有内容。

答案 1 :(得分:0)

解决方案非常明显。只需将updateinputs放置在observe()内,而不是尝试观察上游输入的变化即可获得所需的效果。这已应用于所有上游updateinputs。

  observe({

    x  <- input$agecheck
    if (is.null(x))
      x <- character(0)

    #And update the date range values to match those of the dataset

    updateDateRangeInput(
      session = session,
      inputId = "inDateRange",
      start = suppressWarnings(min(agedata()$Accident.Date)),
      end = suppressWarnings(max(agedata()$Accident.Date))
    )
  })

这解决了问题!