我正在尝试获取一个淡淡的数据帧,并按列“ A”分组,并删除行数少于MIN_SAMPLE_COUNT个的组。
例如,以下代码适用于熊猫:
import pandas as pd
import dask as da
MIN_SAMPLE_COUNT = 1
x = pd.DataFrame([[1,2,3], [1,5,6], [2,8,9], [1,3,5]])
x.columns = ['A', 'B', 'C']
grouped = x.groupby('A')
x = grouped.filter(lambda x: x['A'].count().astype(int) > MIN_SAMPLE_COUNT)
但是,在达斯克,如果我尝试类似的尝试:
import pandas as pd
import dask
MIN_SAMPLE_COUNT = 1
x = pd.DataFrame([[1,2,3], [1,5,6], [2,8,9], [1,3,5]])
x.columns = ['A', 'B', 'C']
x = dask.dataframe.from_pandas(x, npartitions=2)
grouped = x.groupby('A')
x = grouped.filter(lambda x: x['A'].count().astype(int) > MIN_SAMPLE_COUNT)
我收到以下错误消息:
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
~\AppData\Local\Continuum\anaconda3\lib\site-packages\dask\dataframe\groupby.py in __getattr__(self, key)
1162 try:
-> 1163 return self[key]
1164 except KeyError as e:
~\AppData\Local\Continuum\anaconda3\lib\site-packages\dask\dataframe\groupby.py in __getitem__(self, key)
1153 # error is raised from pandas
-> 1154 g._meta = g._meta[key]
1155 return g
~\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\base.py in __getitem__(self, key)
274 if key not in self.obj:
--> 275 raise KeyError("Column not found: {key}".format(key=key))
276 return self._gotitem(key, ndim=1)
KeyError: 'Column not found: filter'
During handling of the above exception, another exception occurred:
AttributeError Traceback (most recent call last)
<ipython-input-55-d8a969cc041b> in <module>()
1 # Remove sixty second blocks that have fewer than MIN_SAMPLE_COUNT samples.
2 grouped = dat.groupby('KPI_60_seconds')
----> 3 dat = grouped.filter(lambda x: x['KPI_60_seconds'].count().astype(int) > MIN_SAMPLE_COUNT)
~\AppData\Local\Continuum\anaconda3\lib\site-packages\dask\dataframe\groupby.py in __getattr__(self, key)
1163 return self[key]
1164 except KeyError as e:
-> 1165 raise AttributeError(e)
1166
1167 @derived_from(pd.core.groupby.DataFrameGroupBy)
AttributeError: 'Column not found: filter'
该错误消息表明在Dask中尚未实现在Pandas中使用的过滤器方法(搜索后我也没有找到它)。
是否有Dask功能可以捕获我要执行的操作?我已经通过了Dask API,但没有什么比我需要的更突出。我当前正在使用Dask'1.1.1'
谢谢您的帮助。
答案 0 :(得分:0)
Dask我本人还很陌生。实现您正在尝试的一种方法如下:
黄昏版本:0.17.3
import pandas as pd
import dask.dataframe as dd
MIN_SAMPLE_COUNT = 1
x = pd.DataFrame([[1,2,3], [1,5,6], [2,8,9], [1,3,5]])
x.columns = ['A', 'B', 'C']
print("x (before):")
print(x) # still pandas
x = dd.from_pandas(x, npartitions=2)
grouped = x.groupby('A').B.count().reset_index()
grouped = grouped.rename(columns={'B': 'Count'})
y = dd.merge(x, grouped, on=['A'])
y = y[y.Count > MIN_SAMPLE_COUNT]
x = y[['A', 'B', 'C']]
print("x (after):")
print(x.compute()) # needs compute for conversion to pandas df
输出:
x (before):
A B C
0 1 2 3
1 1 5 6
2 2 8 9
3 1 3 5
x (after):
A B C
0 1 2 3
1 1 5 6
1 1 3 5