使用ProcessingTimeSessionWindow

时间:2019-03-21 18:28:38

标签: java apache-flink flink-streaming

我正在尝试根据2个条件对传入流中的对象进行存储。

  1. 如果对象总数为N,则对其进行存储并向下游发送。
  2. 如果自上一个N对象以来的时间为> =超时,则对其进行存储并向下游发送。

这两种功能在Flink中分别以CountTriggerProcessingTimeSessionWindows的形式提供。

我试图结合两者的功能来创建自定义触发器,并扩展ProcessingTimeSessionWindows以使用该触发器。它会触发第二种情况,但不会触发第一种情况。由于该流不是键控流,因此我无法使用ValueState来存储计数,因此我想知道对此有哪些替代方案。

代码如下:

public class ProcessingTimeCountSessionWindow extends ProcessingTimeSessionWindows {
    private static final long serialVersionUID = 786L;

    private final int count;

   private ProcessingTimeCountSessionWindow(int count, long timeout) {
       super(timeout);
       this.count = count;
   }

    @Override
    public Trigger<Object, TimeWindow> getDefaultTrigger(StreamExecutionEnvironment env) {
        return ProcessingTimeCountTrigger.create(count);
    }

    /**
     * Creates a new {@code SessionWindows} {@link WindowAssigner} that assigns
     * elements to sessions based on the element timestamp.
     *
     * @param count Max count of elements in session i.e. the upper bound on count gap between sessions
     * @param size The session timeout, i.e. the time gap between sessions
     * @return The policy.
     */
    public static ProcessingTimeCountSessionWindow withCountAndGap(int count, Time size) {
        return new ProcessingTimeCountSessionWindow(count, size.toMilliseconds());
    }

}

自定义触发器如下:

计数触发器使用ReducingState,但我的流未设置密钥,因此无法正常工作。

public class ProcessingTimeCountTrigger extends Trigger<Object, TimeWindow> {

    private static final long serialVersionUID = 786L;

    private final int maxCount;

    private final ReducingStateDescriptor<Integer> countStateDesc =
            new ReducingStateDescriptor<>("window-count", new ReduceFunctions.IntSum(), IntSerializer.INSTANCE);

    private ProcessingTimeCountTrigger(int maxCount) {
        this.maxCount = maxCount;
    }

    @Override
    public TriggerResult onElement(Object element, long timestamp, TimeWindow window, TriggerContext ctx) throws Exception {
        ctx.registerProcessingTimeTimer(window.maxTimestamp());
        ReducingState<Integer> count = ctx.getPartitionedState(countStateDesc);
        count.add(1);
        if (count.get() >= maxCount) {
            return TriggerResult.FIRE_AND_PURGE;
        }
        return TriggerResult.CONTINUE;
    }

    @Override
    public TriggerResult onProcessingTime(long time, TimeWindow window, TriggerContext ctx) throws Exception {
        return TriggerResult.FIRE_AND_PURGE;
    }

    @Override
    public TriggerResult onEventTime(long time, TimeWindow window, TriggerContext ctx) throws Exception {
        return TriggerResult.CONTINUE;
    }

    @Override
    public boolean canMerge() {
        return true;
    }

    @Override
    public void onMerge(TimeWindow window, OnMergeContext ctx) throws Exception {
        ctx.registerProcessingTimeTimer(window.maxTimestamp());
    }

    @Override
    public void clear(TimeWindow window, TriggerContext ctx) throws Exception {
        ctx.getPartitionedState(countStateDesc).clear();
    }

    public static ProcessingTimeCountTrigger create(int maxCount) {
        return new ProcessingTimeCountTrigger(maxCount);
    }
    @Override
    public String toString() {
        return "ProcessingTimeCountTrigger(" + maxCount + ")";
    }

}

2 个答案:

答案 0 :(得分:0)

我能够通过完全复制粘贴CountTrigger并覆盖以下内容来解决此问题:

@Override
public TriggerResult onProcessingTime(long time, W window, TriggerContext ctx) throws Exception {
    return TriggerResult.FIRE_AND_PURGE;
}

我也不需要扩展ProcessingTimeSessionWindow,因为我可以使用创建的自定义触发器。不幸的是,由于CountTrigger是私有构造函数,因此我们无法对其进行扩展,否则这将是最佳解决方案。

所以最终代码看起来像这样:

consoleInput.windowAll(ProcessingTimeSessionWindows.withGap(Time.seconds(10)))
            .trigger(ProcessingTimeCountTrigger.of(10L))
            .process(new ProcessAllWindowFunction<String, String, TimeWindow>() {
        @Override
        public void process(Context context, Iterable<String> elements, Collector<String> out) throws Exception {
            List<String> alphaList = new ArrayList<>();
            elements.forEach(alphaList::add);
            out.collect("Time is " + new Date().toString());
            out.collect("Total " + alphaList.size() + " elements in window");
        }
    })

如果我们有10个元素,或者自上次看到一个元素以来已经10秒钟,它将向下游发送存储的数据。

自定义触发代码如下:

public class ProcessingTimeCountTrigger<W extends Window> extends Trigger<Object, W> {
    private static final long serialVersionUID = 1L;

    private final long maxCount;

    private final ReducingStateDescriptor<Long> stateDesc =
            new ReducingStateDescriptor<>("count", new Sum(), LongSerializer.INSTANCE);

    private ProcessingTimeCountTrigger(long maxCount) {
        this.maxCount = maxCount;
    }

    @Override
    public TriggerResult onElement(Object element, long timestamp, W window, TriggerContext ctx) throws Exception {
        ReducingState<Long> count = ctx.getPartitionedState(stateDesc);
        count.add(1L);
        if (count.get() >= maxCount) {
            count.clear();
            return TriggerResult.FIRE_AND_PURGE;
        }
        return TriggerResult.CONTINUE;
    }

    @Override
    public TriggerResult onEventTime(long time, W window, TriggerContext ctx) {
        return TriggerResult.CONTINUE;
    }

    @Override
    public TriggerResult onProcessingTime(long time, W window, TriggerContext ctx) throws Exception {
        return TriggerResult.FIRE_AND_PURGE;
    }

    @Override
    public void clear(W window, TriggerContext ctx) throws Exception {
        ctx.getPartitionedState(stateDesc).clear();
    }

    @Override
    public boolean canMerge() {
        return true;
    }

    @Override
    public void onMerge(W window, OnMergeContext ctx) throws Exception {
        ctx.mergePartitionedState(stateDesc);
    }

    @Override
    public String toString() {
        return "ProcessingTimeCountTrigger(" +  maxCount + ")";
    }

    /**
     * Creates a trigger that fires once the number of elements in a pane reaches the given count.
     *
     * @param maxCount The count of elements at which to fire.
     * @param <W> The type of {@link Window Windows} on which this trigger can operate.
     */
    public static <W extends Window> ProcessingTimeCountTrigger<W> of(long maxCount) {
        return new ProcessingTimeCountTrigger<>(maxCount);
    }

    private static class Sum implements ReduceFunction<Long> {
        private static final long serialVersionUID = 1L;

        @Override
        public Long reduce(Long value1, Long value2) throws Exception {
            return value1 + value2;
        }

    }
}

答案 1 :(得分:0)

AsadSMalik的代码真的有效吗?默认的ProcessTimeTrigger还会注册计时器,以在到达最大时间戳时触发窗口。源代码为波纹管

ctx.registerProcessingTimeTimer(window.maxTimestamp());