我正在尝试使用 Python “ re ”库和python slice的任意组合来更正Kafka使用以下格式在HDFS上给我们提供的格式不正确的JSON字符串Cloudera的Hadoop发行版。
不正确的json:
{"json_data":"{"table":"TEST.FUBAR","op_type":"I","op_ts":"2019-03-14 15:33:50.031848","current_ts":"2019-03-14T15:33:57.479002","pos":"1111","after":{"COL1":949494949494949494,"COL2":99,"COL3":2,"COL4":" 99999","COL5":9999999,"COL6":90,"COL7":42478,"COL8":"I","COL9":null,"COL10":"2019-03-14 15:33:49","COL11":null,"COL12":null,"COL13":null,"COL14":"x222263 ","COL15":"2019-03-14 15:33:49","COL16":"x222263 ","COL17":"2019-03-14 15:33:49","COL18":"2020-09-10 00:00:00","COL19":"A","COL20":"A","COL21":0,"COL22":null,"COL23":"2019-03-14 15:33:47","COL24":2,"COL25":2,"COL26":"R","COL27":"2019-03-14 15:33:49","COL28":" ","COL29":"PBU67H ","COL30":" 20000","COL31":2,"COL32":null}}"}
注意::开始标签“ json_data ”附近的双引号: ” {实际上,唯一需要删除的错误就是“ 空}} ” }的结尾(我已经测试了它,没有多余的引号)
有效和正确的json:
{"json_data":{"table":"TEST.FUBAR","op_type":"I","op_ts":"2019-03-14 15:33:50.031848","current_ts":"2019-03-14T15:33:57.479002","pos":"1111","after":{"COL1":949494949494949494,"COL2":99,"COL3":2,"COL4":" 99999","COL5":9999999,"COL6":90,"COL7":42478,"COL8":"I","COL9":null,"COL10":"2019-03-14 15:33:49","COL11":null,"COL12":null,"COL13":null,"COL14":"x222263 ","COL15":"2019-03-14 15:33:49","COL16":"x222263 ","COL17":"2019-03-14 15:33:49","COL18":"2020-09-10 00:00:00","COL19":"A","COL20":"A","COL21":0,"COL22":null,"COL23":"2019-03-14 15:33:47","COL24":2,"COL25":2,"COL26":"R","COL27":"2019-03-14 15:33:49","COL28":" ","COL29":"PBU67H ","COL30":" 20000","COL31":2,"COL32":null}}}
我有 40,000至60,000条记录,我需要使用Pyspark每小时读取一次,而基础架构团队则表示需要解决。
是否有使用python读取所有字符串并删除开头和结尾附近的双引号的快速而肮脏的方法?
答案 0 :(得分:0)
对于提供的字符串,我建议您坚持使用re
这样的正则表达式,例如:
'(?<=:|\})(")(?=\}|\{)'
应该做到这一点。由于不需要用双引号引起来的黑体字或冒号,并在开头或结尾的方括号之前。
import re
import json
string = '{"json_data":"{"table":"TEST.FUBAR","op_type":"I","op_ts":"2019-03-14 15:33:50.031848","current_ts":"2019-03-14T15:33:57.479002","pos":"1111","after":{"COL1":949494949494949494,"COL2":99,"COL3":2,"COL4":" 99999","COL5":9999999,"COL6":90,"COL7":42478,"COL8":"I","COL9":null,"COL10":"2019-03-14 15:33:49","COL11":null,"COL12":null,"COL13":null,"COL14":"x222263 ","COL15":"2019-03-14 15:33:49","COL16":"x222263 ","COL17":"2019-03-14 15:33:49","COL18":"2020-09-10 00:00:00","COL19":"A","COL20":"A","COL21":0,"COL22":null,"COL23":"2019-03-14 15:33:47","COL24":2,"COL25":2,"COL26":"R","COL27":"2019-03-14 15:33:49","COL28":" ","COL29":"PBU67H ","COL30":" 20000","COL31":2,"COL32":null}"}}'
trimmed_string = re.sub('(?<=:|\})(")(?=\}|\{)', '', string)
data = json.loads(trimmed_string)
结果:
<class 'dict'> {'json_data': {'table': 'TEST.FUBAR', 'op_type': 'I', 'op_ts': '2019-03-14 15:33:50.031848','current_ts': '2019-03-14T15:33:57.479002', 'pos': '1111', 'after': {'COL1': 949494949494949494, 'COL2': 99, 'COL3': 2, 'COL4': ' 99999', 'COL5': 9999999, 'COL6': 90, 'COL7':42478, 'COL8': 'I', 'COL9': None, 'COL10': '2019-03-14 15:33:49', 'COL11': None, 'COL12': None, 'COL13': None, 'COL14': 'x222263 ', 'COL15': '2019-03-14 15:33:49', 'COL16': 'x222263 ', 'COL17': '2019-03-14 15:33:49', 'COL18': '2020-09-10 00:00:00', 'COL19': 'A', 'COL20': 'A', 'COL21': 0, 'COL22': None, 'COL23': '2019-03-14 15:33:47', 'COL24': 2, 'COL25': 2, 'COL26': 'R', 'COL27': '2019-03-14 15:33:49', 'COL28': ' ', 'COL29': 'PBU67H ', 'COL30': '20000', 'COL31': 2, 'COL32': None}}}