我有一个嵌套列表,如下所示:
library(data.table)
setDT(xy)
xy[, rleid(val), id]
id V1
1: 1 1
2: 1 1
3: 1 2
4: 1 3
5: 1 3
6: 2 1
7: 2 2
我想将其转换为一个数据帧,其中每个子条目与所有父条目并排。所以我最终得到一个看起来像
的数据框 mylist <- list(
list(
id = 1234,
attributes = list(
list(
typeId = 11,
type = 'Main',
date = '2018-01-01',
attributes= list(
list(
team = 'team1',
values = list(
value1 = 1,
value2 = 999)),
list(
team = 'team2',
values = list(
value1 = 2,
value2 = 888))
)
),
list(
typeId = 12,
type = 'Extra',
date = '2018-01-02',
attributes= list(
list(
team = 'team1',
values = list(
value1 = 3,
value2 = 1234)),
list(
team = 'team2',
values = list(
value1 = 4,
value2 = 9876))
)
)
)
)
)
我并不总是知道列表中的名称,因此需要一种通用的方式来执行此操作而无需指定列名
编辑
我对最初的问题有一个答案,但是针对Parfaits的评论:“如果您发布原始JSON和R导入代码,则可能会有更简单的解决方案。”
我可以使用R代码从网址中获取原始JSON:
id type_id type date team value1 value2
1 1234 11 Main 2018-08-01 team1 1 999
2 1234 11 Main 2018-08-01 team2 2 888
3 1234 12 Extra 2018-08-02 team1 3 1234
4 1234 12 Extra 2018-08-02 team2 4 9876
在url中,JSON如下所示:
httr::GET(
feed_url,
authenticate(username, password)
) %>%
httr::content()
答案 0 :(得分:1)
现在具有执行此操作的功能:
flattenList <- function(input) {
output <- NULL
## Check which elements of the current list are also lists.
isList <- sapply(input, class) == "list"
## Any non-list elements are added to the output data frame.
if (any(!isList)) {
## Determine the number of rows in the output.
maxRows <- max(sapply(input[!isList], length))
output <-
## Initialise the output data frame with a dummy variable.
data.frame(dummy = rep(NA, maxRows)) %>%
## Append the new columns.
add_column(!!! input[!isList]) %>%
## Delete the dummy variable.
select(- dummy)
}
## If some elemenets of the current list are also lists, we apply the function again.
if (any(isList)) {
## Apply the function to every sub-list, then bind the new output as rows.
newOutput <- lapply(input[isList], flattenList) %>% bind_rows()
## Check if the current output is NULL.
if (is.null(output)) {
output <- newOutput
} else {
## If the current output has fewer rows than the new output, we recycle it.
if (nrow(output) < nrow(newOutput)) {
output <- slice(output, rep(1:n(), times = nrow(newOutput) / n()))
}
## Append the columns of the new output.
output <- add_column(output, !!! newOutput)
}
}
return(output)
}
> flattenList(mylist)
id typeId type date team priority value1 value2
1 1234 11 Main 2018-01-01 team1 1 1 999
2 1234 11 Main 2018-01-01 team2 1 2 888
3 1234 12 Extra 2018-01-02 team1 1 3 1234
4 1234 12 Extra 2018-01-02 team2 1 4 9876