我有一个如下所示的dataFrame:
+-----------------+--------------------+
| id| document|
+-----------------+--------------------+
| doc1 |"word1, word2" |
| doc2 |"word3 word4" |
+-----------------+--------------------+
我要创建另一个具有以下结构的dataFrame:
+-----------------+--------------------+-----------------+
| id| document| word |
+-----------------+--------------------+----------------|
| doc1 |"word1, word2" | word1 |
| doc1 |"word1 word2" | word2 |
| doc2 |"word3 word4" | word3 |
| doc2 |"word3 word4" | word4 |
+-----------------+--------------------+----------------|
我尝试了以下操作:
public static Dataset<Row> buildInvertIndex(Dataset<Row> inputRaw, SQLContext sqlContext, String id) {
JavaRDD<Row> inputInvertedIndex = inputRaw.javaRDD();
JavaRDD<Tuple3<String, String ,String>> d = inputInvertedIndex.flatMap(x -> {
List<Tuple3<String, String, String>> k = new ArrayList<>();
String data2 = x.getString(0).toString();
String[] field2 = x.getString(1).split(" ", -1);
for(String s: field2)
k.add(new Tuple3<String, String, String>(data2, x.getString(1), s));
return k.iterator();
}
);
JavaPairRDD<String, Tuple2<String, String>>d2 = d.mapToPair(x->{
return new Tuple2<String, Tuple2<String, String>>(x._3(), new Tuple2<String, String>(x._1(), x._2()));
});
Dataset<Row> d3 = sqlContext.createDataset(JavaPairRDD.toRDD(d2), Encoders.tuple(Encoders.STRING(), Encoders.tuple(Encoders.STRING(),Encoders.STRING()))).toDF();
return d3;
}
但是它给出了:
+-----------------+----------------------+
| _1| _2 |
+-----------------+----------------------+
| word1 |[doc1,"word1, word2"] |
| word2 |[doc1,"word1 word2"] |
| word3 |[doc2, "word3, word4"]|
| word4 |[doc2, "word3, word4"]|
+-----------------+----------------------+
我是Java的新手。所以,请任何帮助将不胜感激。另外,请假设在上面的第二个数据框中,我想在两列文档和单词上计算一个字符串相似性度量(即jaccard),并将结果添加到新列中,我该怎么做?