我有一个代码,我将在其中放置3D图像目录并将所有图像转换为单个行数组并保存在单个csv中。我有45个图片目录:
filenames = glob("C:\\Users\\rzara\\Desktop\\resized\\arrays\\*.csv")
dataframes = [pd.read_csv(f, header = None) for f in filenames]
pd.DataFrame(dataframes).to_csv("C:\\Users\\rzara\\Desktop\\resized\\arrays\\Combined.csv", header = None)
我可以通过无监督学习网络运行这些单独的.csv文件。但是,我想将所有45个.csv文件合并为1个.csv文件,以相互比较3D体积。我有这段代码可以合并所有.csv:
ValueError: could not convert string to float: ' 52.0 38.0 31.0 ... 27.0 27.0 27.0\n\n[20 rows x 2500 columns]'
当我尝试运行代码时使用pandas数据框合并文件后,出现错误:
ValueError: could not convert string to float: '...'
我尝试手动编辑.csv并删除所有多余的字符,空格和返回,但随后出现错误:
html {
font-size: 18px;
}
@media (min-width: 576px) {
.container {
max-width: 540px;
}
}
@media (min-width: 768px) {
.container {
max-width: 720px;
}
}
@media (min-width: 992px) {
.container {
max-width: 960px;
}
}
@media (min-width: 1200px) {
.container {
max-width: 1400px;
}
}
h1, .h1 {
font-size: 3.815rem;
}
h2, .h2 {
font-size: 2.441rem;
}
h3, .h3 {
font-size: 1.563rem;
}
h4, .h4 {
font-size: 1.25rem;
}
.project-methodology-wrap {
padding: 5rem 0;
/*========== Media queries ==========*/
}
.project-methodology-wrap .methodologyBullet::before {
content: '';
width: 25px;
height: 25px;
background: #d4272e;
position: absolute;
border-radius: 30px;
left: 26px;
top: 0px;
opacity: 0;
}
.project-methodology-wrap .methodologyBullet::after {
content: '';
width: 12px;
height: 12px;
background: #d4272e;
position: absolute;
border-radius: 30px;
left: 33px;
top: 2px;
}
.project-methodology-wrap .project-methodology-list.active .methodologyBullet {
box-sizing: border-box;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
}
.project-methodology-wrap .project-methodology-list.active .methodologyBullet::before {
opacity: 1;
transition-duration: 0.5s;
left: 26px;
}
.project-methodology-wrap .project-methodology-list.active .methodologyBullet::after {
border: 5px solid #fff;
width: 21px;
height: 21px;
left: 28px;
}
.project-methodology-wrap .project-methodology-listCount, .project-methodology-wrap .methodologyBullet {
position: absolute;
left: 0;
}
.project-methodology-wrap .project-methodology-leftContent {
position: -webkit-sticky;
position: sticky;
top: 0;
}
.project-methodology-wrap .project-methodology-rightContent {
position: relative;
overflow: hidden;
}
.project-methodology-wrap .project-methodology-rightContent:before {
content: "";
height: 100%;
width: 8px;
position: absolute;
background-color: #f1f2f6;
left: calc((100% - 3 * 5rem) * .54 - -2px)!important
}
.project-methodology-wrap .project-methodology-rightContent .project-methodology-list {
position: relative;
-webkit-perspective: 1000px;
perspective: 1000px;
padding-left: 80px;
margin-bottom: 3rem;
}
.project-methodology-wrap .project-methodology-rightContent .project-methodology-list .project-methodology-listContent {
opacity: 0.2;
transition-duration: 0.4s;
-webkit-transform: none;
transform: none;
}
.project-methodology-wrap .project-methodology-rightContent .project-methodology-list.active .project-methodology-listContent {
opacity: 1;
}
}