更干净的方法来选择每组最小值的子集?

时间:2019-03-19 16:24:31

标签: python pandas dataframe

给出如下所示的数据框,这就是我想要的:仅在包含每个序列号最早日期的行中,找到Location为空的行,并使用指定的默认值进行更新。

df = pd.DataFrame([['123456',pd.to_datetime('1/1/2019'),'Location A'],
                   ['123456',pd.to_datetime('1/2/2019'),np.nan],
                   ['123456',pd.to_datetime('1/3/2019'),np.nan],
                   ['123456',pd.to_datetime('5/1/2019'),np.nan],
                   ['654321',pd.to_datetime('2/1/2019'),'Location B'],
                   ['654321',pd.to_datetime('2/2/2019'),'Location B'],
                   ['654321',pd.to_datetime('2/3/2019'),'Location C'],
                   ['112233',pd.to_datetime('3/1/2019'),np.nan],
                   ['112233',pd.to_datetime('3/2/2019'),'Location D'],
                   ['112233',pd.to_datetime('3/3/2019'),np.nan],
                   ['445566',pd.to_datetime('4/1/2019'),'Location E'],
                   ['445566',pd.to_datetime('4/2/2019'),'Location E'],
                   ['445566',pd.to_datetime('4/3/2019'),'Location E'],
                   ['778899',pd.to_datetime('5/1/2019'),np.nan],
                   ['778899',pd.to_datetime('5/2/2019'),np.nan],
                   ['778899',pd.to_datetime('5/3/2019'),np.nan],
                   ['332211',pd.to_datetime('6/1/2019'),np.nan],
                   ['332211',pd.to_datetime('6/2/2019'),'Location F'],
                   ['332211',pd.to_datetime('6/3/2019'),'Location F'],
                   ['665544',pd.to_datetime('7/1/2019'),'Location G'],
                   ['665544',pd.to_datetime('7/2/2019'),'Location G'],
                   ['665544',pd.to_datetime('7/3/2019'),'Location G'],
                   ['998877',pd.to_datetime('8/1/2019'),'Location H'],
                   ['998877',pd.to_datetime('8/2/2019'),'Location I'],
                   ['998877',pd.to_datetime('8/2/2019'),'Location I'],
                   ['147258',pd.to_datetime('9/1/2019'),np.nan],
                   ['147258',pd.to_datetime('9/2/2019'),np.nan],
                   ['147258',pd.to_datetime('9/3/2019'),'Location J']],
                   columns=['Serial','Date','Location'])

df
Out[498]: 
    Serial       Date    Location
0   123456 2019-01-01  Location A
1   123456 2019-01-02         NaN
2   123456 2019-01-03         NaN
3   123456 2019-05-01         NaN
4   654321 2019-02-01  Location B
5   654321 2019-02-02  Location B
6   654321 2019-02-03  Location C
7   112233 2019-03-01         NaN
8   112233 2019-03-02  Location D
9   112233 2019-03-03         NaN
10  445566 2019-04-01  Location E
11  445566 2019-04-02  Location E
12  445566 2019-04-03  Location E
13  778899 2019-05-01         NaN
14  778899 2019-05-02         NaN
15  778899 2019-05-03         NaN
16  332211 2019-06-01         NaN
17  332211 2019-06-02  Location F
18  332211 2019-06-03  Location F
19  665544 2019-07-01  Location G
20  665544 2019-07-02  Location G
21  665544 2019-07-03  Location G
22  998877 2019-08-01  Location H
23  998877 2019-08-02  Location I
24  998877 2019-08-02  Location I
25  147258 2019-09-01         NaN
26  147258 2019-09-02         NaN
27  147258 2019-09-03  Location J

因此,在以上示例中,仅应选择第6、12、15和24行。我已经在下面的代码行中工作了:

  • 使用groupby获取最短日期的索引列表
  • 将其与df的索引进行比较,返回布尔值序列
  • 检查“位置”列中是否为空,并返回另一个布尔系列
  • 比较两个布尔系列,返回最终的布尔系列
  • 最后,根据最终的布尔系列选择位置条目

虽然功能正常,但感觉笨拙且回旋。有更好的方法吗?

df.loc[pd.Series(df.index).isin(df.groupby('Serial')['Date'].idxmin().tolist()) & df['Location'].isnull(), 'Location'] = 'XXXX'

df
Out[502]: 
    Serial       Date    Location
0   123456 2019-01-01  Location A
1   123456 2019-01-02         NaN
2   123456 2019-01-03         NaN
3   123456 2019-05-01         NaN
4   654321 2019-02-01  Location B
5   654321 2019-02-02  Location B
6   654321 2019-02-03  Location C
7   112233 2019-03-01        XXXX
8   112233 2019-03-02  Location D
9   112233 2019-03-03         NaN
10  445566 2019-04-01  Location E
11  445566 2019-04-02  Location E
12  445566 2019-04-03  Location E
13  778899 2019-05-01        XXXX
14  778899 2019-05-02         NaN
15  778899 2019-05-03         NaN
16  332211 2019-06-01        XXXX
17  332211 2019-06-02  Location F
18  332211 2019-06-03  Location F
19  665544 2019-07-01  Location G
20  665544 2019-07-02  Location G
21  665544 2019-07-03  Location G
22  998877 2019-08-01  Location H
23  998877 2019-08-02  Location I
24  998877 2019-08-02  Location I
25  147258 2019-09-01        XXXX
26  147258 2019-09-02         NaN
27  147258 2019-09-03  Location J

编辑:向示例df添加了新的第3行,以阐明日期在序列号组中是唯一的,但在序列号中可能不是唯一的。此示例中索引为3的行与另一个序列的最小日期具有相同的日期,但不应选择。我通过匹配索引而不是日期本身来解决这个问题,但是这样做的方式让人感到混乱。

1 个答案:

答案 0 :(得分:1)

我认为您的解决方案“还可以”,但是您可以使用numpy使它更加紧凑并加快速度。

您可以为此使用df.groupby.Series.min()df.Series.isnull()

此后,您有条件地用np.whereLocation填充XXXX列:

min_date = df.groupby('Serial')['Date'].min()
cond = df['Location'].isnull()

df['Location'] = np.where((df['Date'].isin(min_date)) & (cond) , 'XXXX', df['Location'])

print(df)
    Serial       Date    Location
0   123456 2019-01-01  Location A
1   123456 2019-01-02         NaN
2   123456 2019-01-03         NaN
3   654321 2019-02-01  Location B
4   654321 2019-02-02  Location B
5   654321 2019-02-03  Location C
6   112233 2019-03-01        XXXX
7   112233 2019-03-02  Location D
8   112233 2019-03-03         NaN
9   445566 2019-04-01  Location E
10  445566 2019-04-02  Location E
11  445566 2019-04-03  Location E
12  778899 2019-05-01        XXXX
13  778899 2019-05-02         NaN
14  778899 2019-05-03         NaN
15  332211 2019-06-01        XXXX
16  332211 2019-06-02  Location F
17  332211 2019-06-03  Location F
18  665544 2019-07-01  Location G
19  665544 2019-07-02  Location G
20  665544 2019-07-03  Location G
21  998877 2019-08-01  Location H
22  998877 2019-08-02  Location I
23  998877 2019-08-02  Location I
24  147258 2019-09-01        XXXX
25  147258 2019-09-02         NaN
26  147258 2019-09-03  Location J

编辑在OP对重复日期发表评论后:

我们可以合并min_dates数据框,并在合并时使用indicator=True

min_date = df.groupby('Serial')['Date'].min().reset_index()
cond = df['Location'].isnull()

df = df.merge(min_date, on=['Serial', 'Date'], how='left', indicator=True)

df['Location'] = np.where((df['_merge'] == 'both') & (cond) , 'XXXX', df['Location'])
df = df.drop('_merge', axis=1)
print(df)

    Serial       Date    Location
0   123456 2019-01-01  Location A
1   123456 2019-01-02         NaN
2   123456 2019-01-03         NaN
3   123456 2019-05-01         NaN
4   654321 2019-02-01  Location B
5   654321 2019-02-02  Location B
6   654321 2019-02-03  Location C
7   112233 2019-03-01        XXXX
8   112233 2019-03-02  Location D
9   112233 2019-03-03         NaN
10  445566 2019-04-01  Location E
11  445566 2019-04-02  Location E
12  445566 2019-04-03  Location E
13  778899 2019-05-01        XXXX
14  778899 2019-05-02         NaN
15  778899 2019-05-03         NaN
16  332211 2019-06-01        XXXX
17  332211 2019-06-02  Location F
18  332211 2019-06-03  Location F
19  665544 2019-07-01  Location G
20  665544 2019-07-02  Location G
21  665544 2019-07-03  Location G
22  998877 2019-08-01  Location H
23  998877 2019-08-02  Location I
24  998877 2019-08-02  Location I
25  147258 2019-09-01        XXXX
26  147258 2019-09-02         NaN
27  147258 2019-09-03  Location J