示例:
import pandas as pd
data = {'id':[101,101,101,101,102,102,102,102],
'day':[1,2,1,2,1,2,1,2],
'year':[2011,2011,2012,2012,2011,2011,2012,2012],
'avg':[0.500,0.400,0.300,0.200,0.555,0.455,0.355,0.255],
'sum':[1, 2, 2, 3, 6, 6, 8, 9],
'div':[2, 1, 3, 2, 6, 1, 6, 3]}
df = pd.DataFrame(data)
df
id day year avg sum div
0 101 1 2011 0.500 1 2
1 101 2 2011 0.400 2 1
2 101 1 2012 0.300 2 3
3 101 2 2012 0.200 3 2
4 102 1 2011 0.555 6 6
5 102 2 2011 0.455 6 1
6 102 1 2012 0.355 8 6
7 102 2 2012 0.255 9 3
所需的输出:
id sum div 2011_avg 2012_avg 2011_sum 2012_sum 2011_div 2012_div
0 101 8 8 0.450 0.250 3 5 2 1.5
1 102 29 16 0.505 0.305 12 17 6 2.0
我每年为每一列制作几个数据透视表,并多次加入。
任何人都可以给我一些更简单有效的方法来获得所需输出的知识吗?
答案 0 :(得分:2)
您可能需要两次groupby
,然后再将join
的结果返回
s=df.groupby(['id','year']).agg({'avg':'mean','sum':'sum','div':lambda x : x.iloc[0]/x.iloc[1]})
s=s.unstack()# here is reshape
s.columns=s.columns.map('{0[1]}_{0[0]}'.format) # here is flatten the multiple index
s
Out[723]:
2011_avg 2012_avg 2011_sum 2012_sum 2011_div 2012_div
id
101 0.450 0.250 3 5 2.0 1.5
102 0.505 0.305 12 17 6.0 2.0
s2=df.groupby(['id']).agg({'sum':'sum','div':lambda x : x.iloc[0]/x.iloc[1]})
Finaldf=s2.join(s)# join back
Finaldf
Out[729]:
sum div 2011_avg ... 2012_sum 2011_div 2012_div
id ...
101 8 2 0.450 ... 5 2.0 1.5
102 29 6 0.505 ... 17 6.0 2.0
[2 rows x 8 columns]
答案 1 :(得分:1)
I tried just doing 2 groupbys and then merging both results. Just for naming conventions I used the pivot_table.
df2 = df.groupby(by=["id","year"]).agg({
"avg": np.median,
"sum": np.sum,
"div": lambda x : x.iloc[0]/x.iloc[1]
}).reset_index().pivot_table(values=["avg","sum","div"],columns=["year"],index=["id"]).reset_index()
df2.columns = [str(col[1])+"_"+col[0] if col[1] != "" else col[0] for col in df2.columns.values ]
df2.merge(df.groupby(by=["id"]).agg({
"avg": np.median,
"div": lambda x : x.iloc[0]/x.iloc[1],
"sum": np.sum
}), on="id")