我正在尝试实现一个函数,该函数使参数由数组条目给出的函数最小化。我尝试了示例代码:
z = tf.Variable(6., trainable=True)
A=np.linspace(-1,1,50)
data_tf = tf.convert_to_tensor(A, np.float32)
f_x = data_tf[tf.cast(tf.clip_by_value(z,0,25),tf.int32)]
loss = f_x
opt = tf.train.GradientDescentOptimizer(1).minimize(f_x)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(100):
print(sess.run([z,loss]))
sess.run(opt)
这给了我错误:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-35-278fa6e8507a> in <module>()
14
15 loss = f_x
---> 16 opt = tf.train.GradientDescentOptimizer(1).minimize(f_x)
17
18 with tf.Session() as sess:
~\Anaconda3\lib\site-packages\tensorflow\python\training\optimizer.py in
minimize(self, loss, global_step, var_list, gate_gradients,
aggregation_method, colocate_gradients_with_ops, name, grad_loss)
405 “No gradients provided for any variable, check your graph for
ops”
406 “ that do not support gradients, between variables %s and loss
%s.” %
--> 407 ([str(v) for _, v in grads_and_vars], loss))
408
409 return self.apply_gradients(grads_and_vars, global_step=global_step,
ValueError: No gradients provided for any variable, check your graph for ops
that
do not support gradients, between variables ["<tf.Variable 'Variable:0'
shape=()
dtype=float32_ref>",
有人有主意吗?
答案 0 :(得分:0)
错误消息指出,您要最小化的功能是不可区分的。区域切片操作根本无法连接到您已定义的tf.Variable
。
此示例将起作用
z = tf.Variable(6., trainable=True)
e = tf.Variable(0., trainable=True)
A = np.linspace(-1, 1, 50)
data_tf = tf.convert_to_tensor(A, np.float32)
idx = tf.cast(tf.clip_by_value(z,0,25),tf.int32)
f_x = tf.slice(data_tf, [idx],[1])
f_x = tf.reduce_sum(f_x - e)
loss = f_x
opt = tf.train.GradientDescentOptimizer(1).minimize(f_x)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(100):
sess.run(opt)
print(sess.run([z,loss]))
编辑:您可以像这样添加z
的副本
zz = tf.identity(z)
,但是它将其值绑定到原始变量,因此您仍然需要在最终操作中添加它(在这种情况下为reduce_sum
)以使其具有可区分性。这是因为,如果将其强制转换为int并作为索引传递,它将停止可区分。为了进行更改,您需要在原始值和f_x之间建立连接。希望这可以使它更清楚。