用熊猫除以垃圾箱

时间:2019-03-19 11:18:31

标签: python pandas pandas-groupby

我在熊猫中有一个数据框,如下所示。索引是日期时间对象,按天排序,分为5分钟的时段。我有一列名为“ col1”。因此,如果我这样做

df['col1']

我得到:

DateTime
2008-04-28 09:40:00     300.0
2008-04-28 09:45:00    -800.0
2008-04-28 09:50:00       0.0
2008-04-28 09:55:00    -100.0
2008-04-28 10:00:00       0.0    
2008-04-29 09:40:00     500.0
2008-04-29 09:45:00     800.0
2008-04-29 09:50:00     100.0
2008-04-29 09:55:00    -100.0
2008-04-29 10:00:00       0.0

在熊猫中还有另一个数据框,它是使用groupby在原始数据框中使用

获得的
df2 = df([df.index.time])[['col2']].mean()    

输出:

           col2
09:40:00   4603.585657
09:45:00   5547.011952
09:50:00   8532.007952
09:55:00   6175.298805
10:00:00   4236.055777

我想做的是在不使用for循环的情况下,将5分钟的bin中的col1除以col2。为了更好地解释,整天中,对于每个bin,将col1除以col2。例如,将col1中的所有9:40:00值除以col2中的9:40:00值。

我不知道如何在没有for循环的情况下开始执行此操作,但我的印象是它应该适用于熊猫。

预期输出为:

DateTime
2008-04-28 09:40:00     300.0/4603.585657
2008-04-28 09:45:00    -800.0/5547.011952
2008-04-28 09:50:00       0.0/8532.007952
2008-04-28 09:55:00    -100.0/6175.298805
2008-04-28 10:00:00       0.0/4236.055777  
2008-04-29 09:40:00     500.0/4603.585657
2008-04-29 09:45:00     800.0/5547.011952
2008-04-29 09:50:00     100.0/8532.007952
2008-04-29 09:55:00    -100.0/6175.298805
2008-04-29 10:00:00       0.0/4236.055777

1 个答案:

答案 0 :(得分:1)

如果需要除以时间:

df['new'] = df['col1'].div(df.groupby(df.index.time)['col1'].transform('mean'))
print (df)
                      col1   new
DateTime                        
2008-04-28 09:40:00  300.0  0.75
2008-04-28 09:45:00 -800.0  -inf
2008-04-28 09:50:00    0.0  0.00
2008-04-28 09:55:00 -100.0  1.00
2008-04-28 10:00:00    0.0   NaN
2008-04-29 09:40:00  500.0  1.25
2008-04-29 09:45:00  800.0   inf
2008-04-29 09:50:00  100.0  2.00
2008-04-29 09:55:00 -100.0  1.00
2008-04-29 10:00:00    0.0   NaN

或者如果需要除以天:

df['new'] = df['col1'].div(df.groupby(df.index.date)['col1'].transform('mean'))
print (df)
                      col1       new
DateTime                            
2008-04-28 09:40:00  300.0 -2.500000
2008-04-28 09:45:00 -800.0  6.666667
2008-04-28 09:50:00    0.0 -0.000000
2008-04-28 09:55:00 -100.0  0.833333
2008-04-28 10:00:00    0.0 -0.000000
2008-04-29 09:40:00  500.0  1.923077
2008-04-29 09:45:00  800.0  3.076923
2008-04-29 09:50:00  100.0  0.384615
2008-04-29 09:55:00 -100.0 -0.384615
2008-04-29 10:00:00    0.0  0.000000