自定义损失函数:如何使用Tensorflow在keras的损失函数中添加隐藏层的输出

时间:2019-03-19 11:03:40

标签: tensorflow keras layer loss-function loss

在我的模型中,隐藏层的输出(即“已编码”)具有两个通道(例如,形状:[none,128、128、2])。我希望在损耗函数的这两个通道之间添加SSIM:

损耗= ssim(输入,输出)+ theta * ssim(已编码(通道1),已编码(通道2))。

我该如何实施?以下是我的模型的体系结构。

def structural_similarity_index(y_true, y_pred):
    loss = 1 - tf.image.ssim(y_true, y_pred, max_val=1.0) 
    return loss

def mymodel():
    input_img = Input(shape=(256, 256, 1))

    # encoder
    x = Conv2D(4, (3, 3), activation='relu', padding='same')(input_img)
    x = MaxPooling2D((2, 2), padding='same')(x)
    encoded = Conv2D(2, (3, 3), activation='relu', padding='same', name='encoder')(x)

    # decoder    
    x = Conv2D(4, (3, 3), activation='relu', padding='same')(encoded)
    x = UpSampling2D((2, 2))(x)
    decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

    autoencoder = Model(input_img, decoded)    
    autoencoder.compile(optimizer = 'adadelta', loss = structural_similarity_index)
    autoencoder.summary()        
    return autoencoder

我试图定义一个'loss_warper'函数,如下所示,但是它没有用。这就是我添加此损失函数的方式:

autoencoder.add_loss(loss_wrapper(encoded[:,:,:,0],encoded[:,:,:,1])(input_img, decoded))

'loss_warper'函数:

def loss_wrapper(CH1, CH2):
    def structural_similarity_index(y_true, y_pred):
        regweight = 0.01
        loss = 1 - tf.image.ssim(y_true, y_pred, max_val=1.0)
        loss = loss + regweight*(1-tf.image.ssim(CH1, CH2, max_val=1.0))
        return loss
    return structural_similarity_index

错误消息:

File "E:/Autoencoder.py", line 160, in trainprocess
    validation_data= (x_validate, x_validate))
...
ValueError: ('Error when checking model target: expected no data, but got:', array([...]...[...]))

有人知道如何实现吗?非常感谢您的帮助!

0 个答案:

没有答案