我从大小为4096的预训练vgg19中提取了CNN特征。然后,我使用一种较浅的体系结构来训练具有softmax和中心损失的分类器。不幸的是,softmax损失函数返回nan
。 here有详细的讨论,但是由于labels
和logits
具有两种不同的数据格式(int64,float32),因此我无法解决剪辑问题。此外,我也改变了学习速度,但仍然遇到相同的错误。
请让我知道如何解决这种情况。
from __future__ import division
from __future__ import print_function
import csv
import numpy as np
import tensorflow as tf
from retrieval_model import setup_train_model
FLAGS = None
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def get_name(read_file):
feat_lst = []
identifier_lst = []
with open(read_file, 'r') as csvfile:
read_file = csv.reader(csvfile, delimiter=',')
for row in read_file:
feat = row[:-1]
s_feat = [float(i) for i in feat]
identifier = row[-1]
feat_lst.append(s_feat)
identifier_lst.append(identifier)
return feat_lst, identifier_lst
def get_batch(batch_index, batch_size, labels, f_lst):
start_ind = batch_index * batch_size
end_ind = start_ind + batch_size
return f_lst[start_ind:end_ind], labels[start_ind:end_ind]
def creat_dict(orig_labels):
dict = {}
count = 0
for x in orig_labels:
n_label = dict.get(x, None)
if n_label is None:
dict[x] = count
count += 1
return dict
def main(_):
save_dir = 'model/one-branch-ckpt'
train_file = 'gtrain.csv'
img_feat, img_labels = get_name(train_file)
map_dict = creat_dict(img_labels)
img_labels = [map_dict.get(x) for x in img_labels]
im_feat_dim = 4096
batch_size = 50
max_num_epoch = 10
steps_per_epoch = len(img_feat) // batch_size
num_steps = steps_per_epoch * max_num_epoch
# Setup placeholders for input variables.
im_feat_plh = tf.placeholder(tf.float32, shape=[batch_size, im_feat_dim])
label_plh = tf.placeholder(tf.int64, shape=(batch_size), name='labels')
train_phase_plh = tf.placeholder(tf.bool)
# Setup training operation.
t_l = setup_train_model(im_feat_plh, train_phase_plh, label_plh, classes)
# Setup optimizer.
global_step = tf.Variable(0, trainable=False)
init_learning_rate = 0.0001
learning_rate = tf.train.exponential_decay(init_learning_rate, global_step,
steps_per_epoch, 0.794, staircase=True)
optim = tf.train.AdamOptimizer(init_learning_rate)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_step = optim.minimize(t_l, global_step=global_step)
# Setup model saver.
saver = tf.train.Saver(save_relative_paths=True,max_to_keep=1)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(num_steps):
im_feats, labels = get_batch(
i % steps_per_epoch, batch_size, img_labels, img_feat)
feed_dict = {
im_feat_plh: im_feats,
label_plh: labels,
train_phase_plh: True,
}
[_, loss_val] = sess.run([train_step, t_l], feed_dict=feed_dict)
if i % 100 == 0:
print('Epoch: %d Step: %d Loss: %f' % (i // steps_per_epoch, i, loss_val))
if i % steps_per_epoch == 0 and i > 0:
print('Saving checkpoint at step %d' % i)
saver.save(sess, save_dir, global_step=global_step)
if __name__ == '__main__':
np.random.seed(0)
tf.set_random_seed(0)
tf.app.run(main=main)
**************************** retrieval_model ******************** ************
def setup_train_model(im_feats, train_phase, im_labels, nrof_classes):
alfa = 0.9
# nrof_classes = 28783
i_embed = embedding_model(im_feats, train_phase, im_labels)
c_l = embedding_loss(i_embed, im_labels, alfa, nrof_classes)
loss = softmax_loss(i_embed, im_labels)
total_loss = loss + c_l
return total_loss
def add_fc(inputs, outdim, train_phase, scope_in):
fc = fully_connected(inputs, outdim, activation_fn=None, scope=scope_in + '/fc')
fc_bnorm = tf.layers.batch_normalization(fc, momentum=0.1, epsilon=1e-5,
training=train_phase, name=scope_in + '/bnorm')
fc_relu = tf.nn.relu(fc_bnorm, name=scope_in + '/relu')
fc_out = tf.layers.dropout(fc_relu, seed=0, training=train_phase, name=scope_in + '/dropout')
return fc_out
def embedding_loss(features, label, alfa, nrof_classes):
nrof_features = features.get_shape()[1]
centers = tf.get_variable('centers', [nrof_classes, nrof_features], dtype=tf.float32,
initializer=tf.constant_initializer(0), trainable=False)
label = tf.reshape(label, [-1])
centers_batch = tf.gather(centers, label)
diff = (1 - alfa) * (centers_batch - features)
#centers = tf.scatter_sub(centers, label, diff)
center_loss = tf.reduce_mean(tf.square(features - centers_batch))
#softmax_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=label, logits=features))
#total_loss = softmax_loss + center_loss
return center_loss
def embedding_model(im_feats, train_phase, im_labels,
fc_dim=2048, embed_dim=512):
# Image branch.
im_fc1 = add_fc(im_feats, fc_dim, train_phase, 'im_embed_1')
im_fc2 = fully_connected(im_fc1, embed_dim, activation_fn=None,
scope='im_embed_2')
return tf.nn.l2_normalize(im_fc2, 1, epsilon=1e-10)
def softmax_loss(feat, im_labels):
label = tf.reshape(im_labels, [-1])
softmax = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=label, logits=feat))
return softmax