我正在尝试清除已提供给我的六十列数据摘录。数据的一部分大约是三十列,这些列已作为“是”或“否”值提供,我希望将其转换为逻辑类型。因此,它并不是数据框中的每一列,但其中有很多。我目前正在执行以下操作:
mtcars %>%
mutate(mpg = as.character(mpg)) %>%
mutate(cyl = as.character(cyl)) %>%
mutate(disp = as.character(disp)) %>%
mutate(hp = as.character(hp))
也就是说,手动更改列表中的每一列。但这感觉很容易由于缺少复制粘贴或类似内容而出错。是否有一个函数可以通过传递字段名称列表来一步完成此操作?我倾向于默认使用tidyverse函数,尽管如果需要,基数R也可以使用。
答案 0 :(得分:1)
这应该是重复的,但现在找不到相关的帖子。
我们可以使用mutate_at
并将功能应用于选定的列
library(dplyr)
mtcars %>% mutate_at(vars(mpg, cyl, disp, hp), as.character)
或者,如果我们将列名存储在名为cols
的向量中,则可以这样做
cols <- c("mpg", "cyl", "disp", "hp")
mtcars %>% mutate_at(cols, as.character)
答案 1 :(得分:0)
也许您可以使用lapply()
?
lapply(mtcars, as.character)
如果您希望将数据作为数据框:
df = as.data.frame( lapply(mtcars, as.character), stringsAsFactors = F )
> df$mpg
[1] "21" "21" "22.8" "21.4" "18.7" "18.1" "14.3" "24.4" "22.8"
[10] "19.2" "17.8" "16.4" "17.3" "15.2" "10.4" "10.4" "14.7" "32.4"
[19] "30.4" "33.9" "21.5" "15.5" "15.2" "13.3" "19.2" "27.3" "26"
[28] "30.4" "15.8" "19.7" "15" "21.4"
> df$cyl
[1] "6" "6" "4" "6" "8" "6" "8" "4" "4" "6" "6" "8" "8" "8" "8" "8"
[17] "8" "4" "4" "4" "4" "8" "8" "8" "8" "4" "4" "4" "8" "6" "8" "4"
> df$disp
[1] "160" "160" "108" "258" "360" "225" "360" "146.7"
[9] "140.8" "167.6" "167.6" "275.8" "275.8" "275.8" "472" "460"
[17] "440" "78.7" "75.7" "71.1" "120.1" "318" "304" "350"
[25] "400" "79" "120.3" "95.1" "351" "145" "301" "121"