神经网络ValueError:找到样本数量不一致的输入变量?

时间:2019-03-17 16:41:17

标签: python machine-learning scikit-learn

我已经找到了一些答案,但我希望有人可以在这里解释我做错了什么。

import pandas as pd
import numpy as np
import os
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score


mlb = MultiLabelBinarizer()
nmdc_df = pd.read_excel('ml.xlsx')
nmdc_df.drop(nmdc_df.columns[0:5],axis=1,inplace=True)
# Clean up database
nmdc_df['190dt375_std190MA'] = nmdc_df['ma_190_d_t_375'] +     nmdc_df['std_190_d_t_375']
# nmdc_df.head()
nmdc_df.dropna(how='any', inplace=True)
X = nmdc_df[['d_t_375','190dt375_std190MA']]

y = nmdc_df[['Entry','buyorsell','pl']]

y_enc = mlb.fit_transform(y)


X_train,X_test,y_train,y_test= train_test_split(X, y_enc, test_size=0.3)

model = MLPClassifier(solver='lbfgs', alpha=1e-5,
                  hidden_layer_sizes=(5, 2), random_state=1)
model.fit(X_train,y_train)
predictions = model.predict(X_test)

score = accuracy_score(y_test,predictions)
print(score)
  

ValueError跟踪(最近一次通话最近)    在       29       30#y.head()   ---> 31 X_train,X_test,y_train,y_test = train_test_split(X,y_enc,> test_size = 0.3)       32#头(5)       33#y_train.head()   ValueError:找到输入样本数量不一致的输入变量:> [55,2]

我刚开始学习机器学习,但似乎找不到正确的答案。

X数据帧头:

    d_t_375  190dt375_std190MA
0  0.224533           0.143279
1  0.542533           0.095203
2 -0.238400           0.221700
3  0.167467           0.143120
4 -0.138533           0.076678


X.shape[0]
55
len(X)
55

y个数据帧头:

  Entry buyorsell        pl
0     Y         B -0.224533
1     Y         B -0.350000
2     Y         S  0.950000
3     Y         B -0.167467
4     Y         S  1.300000

y_enc.shape[0]
2
len(y)
55

TIA

0 个答案:

没有答案