我有这个常量:
const animals = ['Hen', 'elephant', 'llama', 'leopard', 'ostrich', 'Whale', 'octopus', 'rabbit', 'lion', 'dog'];
,我正在尝试返回每个单词的第一个字母。 我所拥有的:
const firstLetter = animals.map(animal => {
return_
答案 0 :(得分:3)
在函数origin/master
的处理程序中,对字符串进行解构以获取第一个字母,并将其用作每个索引的结果。
map
const animals = ['Hen', 'elephant', 'llama', 'leopard', 'ostrich', 'Whale', 'octopus', 'rabbit', 'lion', 'dog'];
const result = animals.map(([letter]) => letter);
console.log(result);
答案 1 :(得分:1)
是否要返回数组的每个单词的首字母(问题说“ string”)。
您快到了! 您可以这样做:
animals.map(a => a[0]);
答案 2 :(得分:0)
const animals = ['Hen', 'elephant', 'llama', 'leopard', 'ostrich', 'Whale', 'octopus', 'rabbit', 'lion', 'dog'];
const firstLetter = [];
for(var i = 0; i < animals.length; i++) {
firstLetter.push(animals[i][0]);
}
console.log(firstLetter);
如果animals[i][0]
不起作用,则可以始终使用animals[i].charAt(0)
。我的解决方案是一个更基本的解决方案,但它更好,因为它不使用内置函数。
答案 3 :(得分:0)
.map()
animals
数组。在每个单词.split('')
上将其转换为字母,然后.shift()
以获得第一个字母。
const animals = ['Hen', 'elephant', 'llama', 'leopard', 'ostrich', 'Whale', 'octopus', 'rabbit', 'lion', 'dog'];
let greeting = animals.map(animal => animal.split('').shift());
console.log(JSON.stringify(greeting));
答案 4 :(得分:0)
使用#Artificial data set
Consumption <- c(501, 502, 503, 504, 26, 27, 55, 56, 68, 69, 72, 93)
Gender <- gl(n = 2, k = 6, length = 2*6, labels = c("Male", "Female"), ordered = FALSE)
Income <- c(5010, 5020, 5030, 5040, 260, 270, 550, 560, 680, 690, 720, 930)
df3 <- data.frame(Consumption, Gender, Income)
df3
# GLM Regression
fm1 <- glm(Consumption~Gender+Income, data=df3, family=poisson)
summary(fm1)
# ANOVA
anova(fm1,test="Chi")
#Genders are different than I ajusted one model for male and another for Female
#Male model
df4<-df3[df3$Gender=="Male",]
fm2 <- glm(Consumption~Income, data=df4, family=poisson)
summary(fm2)
#Female model
df5<-df3[df3$Gender=="Female",]
fm3 <- glm(Consumption~Income, data=df5, family=poisson)
summary(fm3)
#Create preditions amd confidence interval
Predictions <- c(predict(fm2, type="link", se.fit = TRUE),
predict(fm3, type="link", se.fit = TRUE))
df3_combined <- cbind(df3, Predictions)
df3_combined$UCL<-df3_combined$fit + 1.96*df3_combined$se.fit
df3_combined$LCL<-df3_combined$fit - 1.96*df3_combined$se.fit
df3_combined<-df3_combined[,-(5:9)]
df3_combined<-as.data.frame(df3_combined)
#Plot
library(tidyverse)
library(ggplot2)
df3_combined %>%
gather(type, value, Consumption) %>%
ggplot(mapping=aes(x=Income, y=value, color = Gender, lty = type)) +
geom_point() +
geom_line(mapping=aes(x=Income, y=exp(fit))) +
geom_smooth(mapping=aes(ymin = exp(LCL), ymax = exp(UCL)), stat="identity")
#
获取每个单词的首字母,然后使用map
将它们组合成字符串:
join
答案 5 :(得分:0)
编写“ firstLetter”功能,代码将为:
const firstLetter = (word) => word[0]
const result = animals.map(firstLetter);