我是pytorch的新手,正在使用ResNet50模型进行训练。
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = models.resnet50(pretrained=True)
for param in model.parameters():
param.requires_grad = False
model.fc = nn.Sequential(nn.Linear(2048, 512),nn.ReLU(),nn.Dropout(0.2),nn.Linear(512, 10),nn.LogSoftmax(dim=1))
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.fc.parameters(), lr=0.003)
model.to(device)
epochs = 1
steps = 0
running_loss = 0
print_every = 10
train_losses, test_losses = [], []
for epoch in range(epochs):
for inputs, labels in trainloader:
steps += 1
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
logps = model.forward(inputs)
loss = criterion(logps, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if steps % print_every == 0:
test_loss = 0
accuracy = 0
model.eval()
with torch.no_grad():
for inputs, labels in testloader:
inputs, labels = inputs.to(device),labels.to(device)
logps = model.forward(inputs)
batch_loss = criterion(logps, labels)
test_loss += batch_loss.item()
ps = torch.exp(logps)
top_p, top_class = ps.topk(1, dim=1)
equals = top_class == labels.view(*top_class.shape)
accuracy += torch.mean(equals.type(torch.FloatTensor)).item()
train_losses.append(running_loss/len(trainloader))
test_losses.append(test_loss/len(testloader))
print(f"Epoch {epoch+1}/{epochs}.. "
f"Train loss: {running_loss/print_every:.3f}.. "
f"Test loss: {test_loss/len(testloader):.3f}.. "
f"Test accuracy: {accuracy/len(testloader):.3f}")
running_loss = 0
model.train()
此代码在Google合作实验室工作正常,但在我的本地计算机(CPU)上执行“ model.forward(inputs)”时,出现错误“非法指令核心转储”。我尝试更新pytorch版本,但问题仍然存在。
答案 0 :(得分:0)
请尝试:CPU:#-GPU(例如:0)
import torch
import torch
import pycuda.driver as cuda
cuda.init()
torch.cuda.is_available()
# True
## Get Id of default device
torch.cuda.current_device()
# 0
cuda.Device(0).name() # '0' is the id of your GPU
# Tesla K80
资料来源:完整参考 https://medium.com/p/speed-up-your-algorithms-part-1-pytorch-56d8a4ae7051