当我尝试获取数据框的某列的平均值时,它显示错误:
TypeError: unsupported operand type(s) for +: 'int' and 'str'
这是我的代码:
import pandas as pd
import numpy as np
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data"
df = pd.read_csv(url, header = None, )
headers = ["symboling","normalized-losses","make","fuel-type","aspiration","num-of-doors","body-style","drive-wheels","engine-location","wheel-base","lenght","width","height","curb-weight","engine-type","num-of-cylinders","engine-size","fuel-system","bore","stroke","compression-ratio","horsepower","peak-rpm","city-mpg","highway-mpg","price"]
df.columns = headers
df.replace('?',np.nan, inplace=True)
mean_val = df['normalized-losses'].mean()
print(mean_val)
答案 0 :(得分:4)
您需要使用pd.to_numeric()将列数据类型转换为数字。如果您使用options errors ='coerce'选项,它将自动用NaN替换非数字字符。
mean_val = pd.to_numeric(df['normalized-losses'], errors='coerce').mean()
print(mean_val)
> 122.0
答案 1 :(得分:1)
在纳撒尼尔的答案上,您混合使用ports:
- 12320
和float
。你可以看到这个
str
哪个会回来
print(df['normalized-losses'].apply(type))
如错误消息所述,您需要将所有数据设为0 <class 'float'>
1 <class 'float'>
2 <class 'float'>
3 <class 'str'>
4 <class 'str'>
类型。您可以按照Nathaniel的建议使用float
,也可以使用
pd.to_numeric
输出
122.0
如果您只对标准化损失列感兴趣,并且知道所有字符串都可以正确转换(在这种情况下,我相信它们可以,因为它们都是数字字符串,例如'130'),您可以只是这样做。如果要使用其余数据并希望转换所有数字字符串,请使用Nathaniel的实现。