我想从此xarray中删除重复的行:
<xarray.QFDataArray (dates: 61, tickers: 4, fields: 6)>
array([[[ 4.9167, nan, ..., 2.1695, nan],
[ 4.9167, nan, ..., 2.1695, nan],
[ 4.9167, nan, ..., 2.1695, nan],
[ 4.9167, nan, ..., 2.1695, nan]],
[[ 5. , nan, ..., 2.1333, 70.02 ],
[ 5. , nan, ..., 2.1333, 70.02 ],
[ 5. , nan, ..., 2.1333, 70.02 ],
[ 5. , nan, ..., 2.1333, 70.02 ]],
...,
[[ nan, nan, ..., nan, nan],
[ nan, nan, ..., nan, nan],
[ nan, nan, ..., nan, nan],
[ nan, nan, ..., nan, nan]],
[[ nan, nan, ..., nan, nan],
[ nan, nan, ..., nan, nan],
[ nan, nan, ..., nan, nan],
[ nan, nan, ..., nan, nan]]])
Coordinates:
* tickers (tickers) object BloombergTicker:0000630D US Equity ... BloombergTicker:0000630D US Equity
* fields (fields) <U27 'PX_LAST' 'BEST_PEG_RATIO' ... 'VOLATILITY_360D'
* dates (dates) datetime64[ns] 1995-06-30 1995-07-30 ... 2000-06-30
在上面的示例中,股票行情重复了4次。我的目标是获得看起来如下所示的输出:
<xarray.QFDataArray (dates: 61, tickers: 1, fields: 6)>
array([[[ 4.9167, nan, ..., 2.1695, nan],
[ 5. , nan, ..., 2.1333, 70.02 ],
...,
[ nan, nan, ..., nan, nan],
[ nan, nan, ..., nan, nan]]])
Coordinates:
* tickers (tickers) object BloombergTicker:0000630D US Equity
* fields (fields) <U27 'PX_LAST' 'BEST_PEG_RATIO' ... 'VOLATILITY_360D'
* dates (dates) datetime64[ns] 1995-06-30 1995-07-30 ... 2000-06-30
请注意,“ tickers”字段从4减少到1。
以下是代码(不包括库导入):
def _get_historical_data_cache():
path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'cached_values_v2_clean.cache')
data = cached_value(_get_historical_data_bloomberg, path) # data importation from cache memory, if not available, directly from a data provider
return data
def _slice_by_ticker():
tickers = _get_historical_data_cache().indexes['tickers']
for k in tickers:
slice = _get_historical_data_cache().loc[:, k, :] # it gives me duplicated tickers.
从数据提供程序中,我得到一个3D数据数组(xarray),其尺寸如下:日期,行情指示器和字段。目标是按计划逐个“切片”此多维数据集,以我为例,逐个滴答作响,以便在每次迭代中获得一个表示每个对象的2D数据数组(或如上图所示的3D xarray)。代码及其相应的数据(日期和字段)。
这是xarray在第一次迭代中的样子(如上所示)。问题是唯一的代码重复了:
In[2]: slice
Out[2]:
<xarray.QFDataArray (dates: 61, tickers: 4, fields: 6)>
array([[[ 4.9167, nan, ..., 2.1695, nan],
[ 4.9167, nan, ..., 2.1695, nan],
[ 4.9167, nan, ..., 2.1695, nan],
[ 4.9167, nan, ..., 2.1695, nan]],
[[ 5. , nan, ..., 2.1333, 70.02 ],
[ 5. , nan, ..., 2.1333, 70.02 ],
[ 5. , nan, ..., 2.1333, 70.02 ],
[ 5. , nan, ..., 2.1333, 70.02 ]],
...,
[[ nan, nan, ..., nan, nan],
[ nan, nan, ..., nan, nan],
[ nan, nan, ..., nan, nan],
[ nan, nan, ..., nan, nan]],
[[ nan, nan, ..., nan, nan],
[ nan, nan, ..., nan, nan],
[ nan, nan, ..., nan, nan],
[ nan, nan, ..., nan, nan]]])
Coordinates:
* tickers (tickers) object BloombergTicker:0000630D US Equity ... BloombergTicker:0000630D US Equity
* fields (fields) <U27 'PX_LAST' 'BEST_PEG_RATIO' ... 'VOLATILITY_360D'
* dates (dates) datetime64[ns] 1995-06-30 1995-07-30 ... 2000-06-30
当我尝试Ryan提出的解决方案时,代码如下:
def _slice_by_ticker():
tickers = _get_historical_data_cache().indexes['tickers']
for k in tickers:
slice = _get_historical_data_cache().loc[:, k, :] # it gives me duplicated tickers.
# get unique ticker values as numpy array
unique_tickers = np.unique(slice.tickers.values)
da_reindexed = slice.reindex(tickers=unique_tickers)
这是错误:
ValueError: cannot reindex or align along dimension 'tickers' because the index has duplicate values
感谢您的帮助! :)
答案 0 :(得分:0)
听起来您想重新索引数据数组。 (请参阅xarray docs on reindexing。)
下面,我将假设da
是原始数据数组的名称
import numpy as np
# get unique ticker values as numpy array
unique_tickers = np.unique(da.tickers.values)
da_reindexed = da.reindex(tickers=unique_tickers)
答案 1 :(得分:0)
找到答案。
首先,我尝试了这一点:
slice_clean = (slice[:, :1]).rename('slice_clean')
slice.reindex_like(slice_clean)
这给了我与上面所示相同的错误:
ValueError: cannot reindex or align along dimension 'tickers' because the index has duplicate values
然后,我尝试了以下方法:
slice = slice[:,:1]
成功了!
<xarray.QFDataArray (dates: 61, tickers: 1, fields: 6)>
array([[[ 4.9167, nan, ..., 2.1695, nan]],
[[ 5. , nan, ..., 2.1333, 70.02 ]],
...,
[[ nan, nan, ..., nan, nan]],
[[ nan, nan, ..., nan, nan]]])
Coordinates:
* tickers (tickers) object BloombergTicker:0000630D US Equity
* fields (fields) <U27 'PX_LAST' 'BEST_PEG_RATIO' ... 'VOLATILITY_360D'
* dates (dates) datetime64[ns] 1995-06-30 1995-07-30 ... 2000-06-30