我不知道为什么此代码无法正常工作。当我将奖励放入列表时,出现错误告诉我尺寸不正确。我不确定该怎么办。
我正在实施加强型深层q网络。 r是一个numpy 2d数组,给出1除以停止点之间的距离。这样一来,越近的停靠站就会获得越高的奖励。
无论我做什么,我都无法获得平稳运行的奖励。我是Tensorflow的新手,所以这可能是由于我对Tensorflow占位符和feed dict等内容缺乏经验造成的。
预先感谢您的帮助。
observations = tf.placeholder('float32', shape=[None, num_stops])
game states : r[stop], r[next_stop], r[third_stop]
actions = tf.placeholder('int32',shape=[None])
rewards = tf.placeholder('float32',shape=[None]) # +1, -1 with discounts
Y = tf.layers.dense(observations, 200, activation=tf.nn.relu)
Ylogits = tf.layers.dense(Y, num_stops)
sample_op = tf.random.categorical(logits=Ylogits, num_samples=1)
cross_entropies = tf.losses.softmax_cross_entropy(onehot_labels=tf.one_hot (actions,num_stops), logits=Ylogits)
loss = tf.reduce_sum(rewards * cross_entropies)
optimizer = tf.train.RMSPropOptimizer(learning_rate=0.001, decay=.99)
train_op = optimizer.minimize(loss)
visited_stops = []
steps = 0
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# Start at a random stop, initialize done to false
current_stop = random.randint(0, len(r) - 1)
done = False
# reset everything
while not done: # play a game in x steps
observations_list = []
actions_list = []
rewards_list = []
# List all stops and their scores
observation = r[current_stop]
# Add the stop to a list of non-visited stops if it isn't
# already there
if current_stop not in visited_stops:
visited_stops.append(current_stop)
# decide where to go
action = sess.run(sample_op, feed_dict={observations: [observation]})
# play it, output next state, reward if we got a point, and whether the game is over
#game_state, reward, done, info = pong_sim.step(action)
new_stop = int(action)
reward = r[current_stop][action]
if len(visited_stops) == num_stops:
done = True
if steps >= BATCH_SIZE:
done = True
steps += 1
observations_list.append(observation)
actions_list.append(action)
rewards.append(reward)
#rewards_list = np.reshape(rewards, [-1, 25])
current_stop = new_stop
#processed_rewards = discount_rewards(rewards, args.gamma)
#processed_rewards = normalize_rewards(rewards, args.gamma)
print(rewards)
sess.run(train_op, feed_dict={observations: [observations_list],
actions: [actions_list],
rewards: [rewards_list]})
答案 0 :(得分:0)
行rewards.append(reward)
会导致错误,这是因为您的rewards
变量是张量,正如您在rewards = tf.placeholder('float32',shape=[None])
中定义的那样,并且您不能像这样将值附加到张量中。
您可能想致电rewards_list.append(reward)
。
此外,您正在初始化变量
observations_list = []
actions_list = []
rewards_list = []
在循环内部,因此在每次迭代中,ols值将被空列表覆盖。您可能希望在while not done:
行之前有这3行。