无效的参数组合-eq()

时间:2019-03-13 17:03:33

标签: python numpy image-processing machine-learning pytorch

我正在使用共享的here代码来测试CNN图像分类器。调用测试函数时,我在line 155上收到了此错误:

test_acc += torch.sum(prediction == labels.data)
TypeError: eq() received an invalid combination of arguments - got (numpy.ndarray), but expected one of:
 * (Tensor other)
      didn't match because some of the arguments have invalid types: ([31;1mnumpy.ndarray[0m)
 * (Number other)
      didn't match because some of the arguments have invalid types: ([31;1mnumpy.ndarray[0m)

test函数的片段:

def test():
    model.eval()
    test_acc = 0.0
    for i, (images, labels) in enumerate(test_loader):

        if cuda_avail:
                images = Variable(images.cuda())
                labels = Variable(labels.cuda())

        #Predict classes using images from the test set
        outputs = model(images)
        _,prediction = torch.max(outputs.data, 1)
        prediction = prediction.cpu().numpy()
        test_acc += torch.sum(prediction == labels.data) #line 155



    #Compute the average acc and loss over all 10000 test images
    test_acc = test_acc / 10000

return test_acc

快速搜索后,我发现该错误可能与SO question中的predictionlabels之间的比较有关。

如何解决此问题,而不对其余代码进行打扰?

1 个答案:

答案 0 :(得分:1)

您为什么在<input type='file' webkitdirectory='' directory='' multiple='true' />.numpy()? 这样,您可以将PyTorch张量转换为NumPy数组,从而使其类型与prediction = prediction.cpu().numpy()不兼容。

删除labels.data部分应该可以解决此问题。