在下面的示例中,如果我们有两个数据帧,例如df1
和df2
;我们如何合并它们以生成df3
?
import pandas as pd
import numpy as np
data1 = [("a1",["A","B"]),("a2",["A","B","C"]),("a3",["B","C"])]
df1 = pd.DataFrame(data1,columns = ["column1","column2"])
print df1
data2 = [("A",["1","2"]),("B",["1","3","4"]),("C",["5"])]
df2 = pd.DataFrame(data2,columns=["column3","column4"])
print df2
data3 = [("a1",["A","B"],["1","2","3","4"]),("a2",["A","B","C"],
["1","2","3","4","5"]),("a3",["B","C"],["1","3","4","5"])]
df3 = pd.DataFrame(data3,columns = ["column1","column2","column5"])
print df3
我的目标是不使用循环,因为我正在处理大型数据集
答案 0 :(得分:7)
用stack
重新创建后,再用DataFrame
来检查map
df1的列表列
另外,由于您要求不使用for循环,因此我正在使用df2
,在这种情况下,sum
比sum
或*for loop*
慢得多
itertools
正如我提到的,我们大多数人都建议,您也可以使用For loops with pandas - When should I care?
进行检查s=pd.DataFrame(df1.column2.tolist()).stack()
df1['New']=s.map(df2.set_index('column3').column4).sum(level=0).apply(set)
df1
Out[36]:
column1 column2 New
0 a1 [A, B] {2, 4, 3, 1}
1 a2 [A, B, C] {3, 5, 4, 2, 1}
2 a3 [B, C] {4, 3, 1, 5}
答案 1 :(得分:2)
您可以按照以下步骤进行操作:
df2_dict = {i:j for i,j in zip(df2['column3'].values, df2['column4'].values)}
# print(df2_dict)
def func(val):
return sorted(list(set(np.concatenate([df2_dict.get(i) for i in val]))))
df1['column5'] = df1['column2'].apply(func)
print(df1)
输出:
column1 column2 column5
0 a1 [A, B] [1, 2, 3, 4]
1 a2 [A, B, C] [1, 2, 3, 4, 5]
2 a3 [B, C] [1, 3, 4, 5]
答案 2 :(得分:0)
这有效:
df1['column2'].apply(lambda x: list(set((np.concatenate([df2.set_index('column3')['column4'][i] for i in list(x)])) )))