获得相对于输入的输出梯度, 可以使用
grads = tf.gradients(model.output, model.input)
其中grads =
[<tf.Tensor 'gradients_81/dense/MatMul_grad/MatMul:0' shape=(?, 18) dtype=float32>]
这是一个模型,其中有18个连续输入和1个连续输出。
我假设这是一个符号表达式,并且需要18个条目的列表才能将其馈送到张量,以便它以浮点数形式给出导数。
我会使用
Test =[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]
with tf.Session() as sess:
alpha = sess.run(grads, feed_dict = {model.input : Test})
print(alpha)
但是我得到了错误
FailedPreconditionError (see above for traceback): Error while reading resource variable dense_2/bias from Container: localhost. This could mean that the variable was uninitialized. Not found: Container localhost does not exist. (Could not find resource: localhost/dense_2/bias)
[[Node: dense_2/BiasAdd/ReadVariableOp = ReadVariableOp[dtype=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](dense_2/bias)]]
怎么了?
编辑: 这就是之前发生的事情:
def build_model():
model = keras.Sequential([
...])
optimizer = ...
model.compile(loss='mse'... )
return model
model = build_model()
history= model.fit(data_train,train_labels,...)
loss, mae, mse = model.evaluate(data_eval,...)
到目前为止的进展:
Test =[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]
with tf.Session() as sess:
tf.keras.backend.set_session(sess)
tf.initializers.variables(model.output)
alpha = sess.run(grads, feed_dict = {model.input : Test})
也无法正常工作,并显示错误消息:
TypeError: Using a `tf.Tensor` as a Python `bool` is not allowed. Use `if t is not None:` instead of `if t:` to test if a tensor is defined, and use TensorFlow ops such as tf.cond to execute subgraphs conditioned on the value of a tensor.