我正在尝试在远程服务器(AWS)中处理非常大的文本文件(〜11 GB)。 需要对文件进行的处理非常复杂,使用常规的python程序,总运行时间约为1个月。为了减少运行时间,我试图在一些进程之间划分文件上的工作。 电脑规格: Computer specs
代码:
def initiate_workers(works, num_workers, output_path):
"""
:param works: Iterable of lists of strings (The work to be processed divided in num_workers pieces)
:param num_workers: Number of workers
:return: A list of Process objects where each object is ready to process its share.
"""
res = []
for i in range(num_workers):
# process_batch is the processing function
res.append(multiprocessing.Process(target=process_batch, args=(output_path + str(i), works[i])))
return res
def run_workers(workers):
"""
Run the workers and wait for them to finish
:param workers: Iterable of Process objects
"""
logging.info("Starting multiprocessing..")
for i in range(len(workers)):
workers[i].start()
logging.info("Started worker " + str(i))
for j in range(len(workers)):
workers[j].join()
我得到以下回溯:
Traceback (most recent call last):
File "w2v_process.py", line 93, in <module>
run_workers(workers)
File "w2v_process.py", line 58, in run_workers
workers[i].start()
File "/usr/lib/python3.6/multiprocessing/process.py", line 105, in start
self._popen = self._Popen(self)
File "/usr/lib/python3.6/multiprocessing/context.py", line 223, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "/usr/lib/python3.6/multiprocessing/context.py", line 277, in _Popen
return Popen(process_obj)
File "/usr/lib/python3.6/multiprocessing/popen_fork.py", line 19, in __init__
self._launch(process_obj)
File "/usr/lib/python3.6/multiprocessing/popen_fork.py", line 66, in _launch
self.pid = os.fork()
OSError: [Errno 12] Cannot allocate memory
无论num_workers = 1还是6或14都无关紧要。
我在做什么错了?
谢谢!
编辑
发现了问题。我在SO的某个地方看到了fork(回溯的最后一行)实际上使RAM加倍。在处理文件时,我将其加载到内存中,该内存已填满〜18GB,并且鉴于RAM的整个容量为30GB,确实存在内存分配错误。 我将大文件分成较小的文件(工作程序的数量),并为每个Process对象提供此文件的路径。这样,每个进程都会以一种懒惰的方式读取数据,并且一切正常!
答案 0 :(得分:0)
发现了问题。我在SO的某个地方看到了fork(回溯的最后一行)实际上使RAM加倍。在处理文件时,我将其加载到内存中,该内存已填满〜18GB,并且鉴于RAM的整个容量为30GB,确实存在内存分配错误。我将大文件分成较小的文件(工作程序的数量),并为每个Process对象提供此文件的路径。这样,每个进程都会以一种懒惰的方式读取数据,并且一切正常!