我尝试在自动编码器中自定义损失函数,损失函数必须考虑另一个降维(LLE)的结果,传递给函数的数据必须更新为每次计算损失函数,必须更改的变量不会更改。那是我的代码,我在等待您的答案,谢谢。
损失函数:
def increment():
global i
i = i+1
return i
def call_loss_lle():
global i #i does not increment
def loss_lle(y_true,y_pred):
global i
global increment
i = increment()
X = x_train[i-1:i,]
lamda = 0.3
z = encoder.predict(X)
encoded = encoder.predict(X)
z = z.reshape((28,3))
y,W = LLE_(encoded.reshape((28,3)),10)
produit = np.dot(W,z)
diff = z - produit
loss_lle = lamda * np.linalg.norm(diff)
cross = K.binary_crossentropy(y_true,y_pred)
return cross + loss_lle
return loss_lle
自动编码器:
from keras.layers import Input, Dense
from keras.models import Model
# this is the size of our encoded representations
encoding_dim = 84
# this is our input placeholder
input_img = Input(shape=(784,))
# "encoded" is the encoded representation of the input
encoded = Dense(encoding_dim, activation='relu')(input_img)
# "decoded" is the lossy reconstruction of the input
decoded = Dense(784, activation='sigmoid')(encoded)
# this model maps an input to its reconstruction
autoencoder = Model(input_img, decoded)
# this model maps an input to its encoded representation
encoder = Model(input_img, encoded)
# create a placeholder for an encoded (32-dimensional) input
encoded_input = Input(shape=(encoding_dim,))
# retrieve the last layer of the autoencoder model
decoder_layer = autoencoder.layers[-1]
# create the decoder model
decoder = Model(encoded_input, decoder_layer(encoded_input))
autoencoder.updates()
autoencoder.compile(optimizer='adadelta', loss=call_loss_lle())