当输入和返回为字典时,如何加快numba的功能?
我熟悉将numba用于接受数字并返回数组的函数,例如:
@numba.jit('float64[:](int32,int32)',nopython=True)
def f(a, b):
# returns array 1d array
现在我有一个接受和返回字典的函数。如何在这里申请numba?
def collocation(aeolus_data,val_data):
...
return sample_aeolus, sample_valdata
答案 0 :(得分:0)
现在已在Numba版本43.0
中添加了对Dictionary的支持。尽管它非常有限(不支持列表并设置为键/值)。但是,您可以阅读更新的文档here for more info。
这是一个例子
import numpy as np
from numba import njit
from numba import types
from numba.typed import Dict
# First create a dictionary using Dict.empty()
# Specify the data types for both key and value pairs
# Dict with key as strings and values of type float array
dict_param1 = Dict.empty(
key_type=types.unicode_type,
value_type=types.float64[:],
)
# Dict with keys as string and values of type float
dict_param2 = Dict.empty(
key_type=types.unicode_type,
value_type=types.float64,
)
# Type-expressions are currently not supported inside jit functions.
float_array = types.float64[:]
@njit
def add_values(d_param1, d_param2):
# Make a result dictionary to store results
# Dict with keys as string and values of type float array
result_dict = Dict.empty(
key_type=types.unicode_type,
value_type=float_array,
)
for key in d_param1.keys():
result_dict[key] = d_param1[key] + d_param2[key]
return result_dict
dict_param1["hello"] = np.asarray([1.5, 2.5, 3.5], dtype='f8')
dict_param1["world"] = np.asarray([10.5, 20.5, 30.5], dtype='f8')
dict_param2["hello"] = 1.5
dict_param2["world"] = 10
final_dict = add_values(dict_param1, dict_param2)
print(final_dict)
# Output : {hello: [3. 4. 5.], world: [20.5 30.5 40.5]}
Link to Google colab notebook。
参考文献:
-https://github.com/numba/numba/issues/3644
-https://numba.pydata.org/numba-doc/dev/reference/pysupported.html#dict