我有一个GCS存储桶,每分钟接收一次文件,因此我正在使用pub / sub方法获取新文件,并进行了一些转换并将其存储到另一个存储桶中。但是我正在获取
“从SDK指令中收到错误”
这是我的代码:
from __future__ import absolute_import
import os
import logging
import argparse
from google.cloud import language
from google.cloud.language import enums
from google.cloud.language import types
from datetime import datetime
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.options.pipeline_options import SetupOptions
from apache_beam.options.pipeline_options import GoogleCloudOptions
from apache_beam.options.pipeline_options import StandardOptions
from apache_beam.io.textio import ReadFromText, WriteToText
def run(argv=None):
"""Build and run the pipeline."""
parser = argparse.ArgumentParser()
parser.add_argument(
'--output_filename', required=True,
help=('Output GCS bucket '
'"gs:/***********/output_files".'))
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument(
'--input_topic',
help=('Input PubSub topic of the form '
'"projects/*******/topics/testsub1".'))
group.add_argument(
'--input_subscription',
help=('Input PubSub subscription of the form '
'"projects/*********/*****/test_subscription."'))
known_args, pipeline_args = parser.parse_known_args(argv)
# We use the save_main_session option because one or more DoFn's in this
# workflow rely on global context (e.g., a module imported at module level).
pipeline_options = PipelineOptions(pipeline_args)
pipeline_options.view_as(StandardOptions).runner = 'DataflowRunner'
pipeline_options.view_as(SetupOptions).save_main_session = True
pipeline_options.view_as(StandardOptions).streaming = True
p = beam.Pipeline(options=pipeline_options)
# Read from PubSub into a PCollection.
if known_args.input_subscription:
messages = (p
| beam.io.ReadFromPubSub(
subscription=known_args.input_subscription)
.with_output_types(bytes))
else:
messages = (p
| beam.io.ReadFromPubSub(topic=known_args.input_topic)
.with_output_types(bytes))
lines = messages | 'decode' >> beam.Map(lambda x: x.decode('utf-8'))
class Split(beam.DoFn):
def process(self,element):
element = element.rstrip("\n").encode('utf-8')
text = element.split(',')
result = []
for i in range(len(text)):
dat = text[i]
#print(dat)
client = language.LanguageServiceClient()
document = types.Document(content=dat,type=enums.Document.Type.PLAIN_TEXT)
sent_analysis = client.analyze_sentiment(document=document)
sentiment = sent_analysis.document_sentiment
data = [
(dat,sentiment.score)
]
result.append(data)
return result
class WriteToCSV(beam.DoFn):
def process(self, element):
return [
"{},{}".format(
element[0][0],
element[0][1]
)
]
Transform = (lines
| 'split' >> beam.ParDo(Split())
| beam.ParDo(WriteToCSV())
| beam.io.WriteToText(known_args.output_filename)
)
result = p.run()
result.wait_until_finish()
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
run()
我正在通过编写以下代码来运行它:
python SentAnal.py \ --runner DataflowRunner \-项目 b ********** \ --temp_location gs:// baker ******** / tmp / \ --input_topic“项目/ ****** / topics / *****” \ --output_filename“ gs:// ********* / ********” \ --streaming \ --experiments = allow_non_updatable_job