Tensorflow:1.12
我正在使用bidirectional_dynamic_rnn
。我写了encoder_output
到BahdanauAttention的memory选项(在tensorflow网站上推荐),但是它抛出一个错误:
ValueError:层memory_layer需要1个输入,但收到2个 输入张量。收到的输入:tf.Tensor 'bidirectional_rnn / fw / fw / transpose_1:0'shape =(?,?,512) dtype = float32,tf.Tensor'ReverseSequence:0'shape =(?,?,512) dtype = float32]
def model_inputs():
inputs = tf.placeholder(tf.int32, [None, None], name='input')
targets = tf.placeholder(tf.int32, [None, None], name='target')
lr = tf.placeholder(tf.float32, name='learning_rate')
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
return inputs, targets, lr, keep_prob
def preprocess_targets(targets, word2int, batch_size):
left_side = tf.fill([batch_size, 1], word2int['<SOS>'])
right_side = tf.strided_slice(targets, [0,0], [batch_size, -1], [1,1])
preprocessed_targets = tf.concat([left_side, right_side], 1)
return preprocessed_targets
#Encoder RNN
def encoder_rnn(rnn_inputs, rnn_size, num_layers, keep_prob, sequence_lenght):
lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size)
lstm_dropout = tf.contrib.rnn.DropoutWrapper(lstm, input_keep_prob = keep_prob)
encoder_cell = tf.contrib.rnn.MultiRNNCell([lstm_dropout] * num_layers)
global encoder_output, encoder_state
encoder_output, encoder_state = tf.nn.bidirectional_dynamic_rnn(cell_fw = encoder_cell,
cell_bw = encoder_cell,
sequence_length = sequence_length,
inputs = rnn_inputs,
dtype = tf.float32)
return encoder_state
#Decoding training set
def decode_training_set(encoder_state, decoder_cell, decoder_embedded_input, sequence_lenght, decoding_scope, output_function, keep_prob, batch_size):
#attention_states = tf.zeros([batch_size, 1, decoder_cell.output_size])
attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(num_units = decoder_cell.output_size, memory = encoder_output, normalize=False)
我该怎么办?