我有一个如下所示的数据框。首先,我想要每个日期中每个状态的计数。例如,2017-11-02中“ COMPLETED”的数量为2。我想要这样的堆栈图。
status start_time end_time \
0 COMPLETED 2017-11-01 19:58:54.726 2017-11-01 20:01:05.414
1 COMPLETED 2017-11-02 19:43:04.000 2017-11-02 19:47:54.877
2 ABANDONED_BY_USER 2017-11-03 23:36:19.059 2017-11-03 23:36:41.045
3 ABANDONED_BY_TIMEOUT 2017-10-31 17:02:38.689 2017-10-31 17:12:38.844
4 COMPLETED 2017-11-02 19:35:33.192 2017-11-02 19:42:51.074
以下是数据框的csv:
status,start_time,end_time
COMPLETED,2017-11-01 19:58:54.726,2017-11-01 20:01:05.414
COMPLETED,2017-11-02 19:43:04.000,2017-11-02 19:47:54.877
ABANDONED_BY_USER,2017-11-03 23:36:19.059,2017-11-03 23:36:41.045
ABANDONED_BY_TIMEOUT,2017-10-31 17:02:38.689,2017-10-31 17:12:38.844
COMPLETED,2017-11-02 19:35:33.192,2017-11-02 19:42:51.074
ABANDONED_BY_TIMEOUT,2017-11-02 19:35:33.192,2017-11-02 19:42:51.074
要实现这一目标:
df_['status'].astype('category')
df_ = df_.set_index('start_time')
grouped = df_.groupby('status')
color = {'COMPLETED':'green','ABANDONED_BY_TIMEOUT':'blue',"MISSED":'red',"ABANDONED_BY_USER":'yellow'}
for key_, group in grouped:
print(key_)
df_ = group.groupby(lambda x: x.date).count()
print(df_)
df_['status'].plot(label=key_,kind='bar',stacked=True,\
color=color[key_],rot=90)
plt.show()
以下内容的输出是:
ABANDONED_BY_TIMEOUT
status end_time
2017-10-31 1 1
ABANDONED_BY_USER
status end_time
2017-11-03 1 1
COMPLETED
status end_time
2017-11-01 1 1
2017-11-02 2 2
我们可以看到的问题是,仅考虑了最后两个日期“ 2017-11-01”和“ 2017-11-02”,而不是所有类别中的所有日期。 我该如何解决这个问题?欢迎使用全新的堆积图方法。谢谢!
答案 0 :(得分:2)
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df_ = pd.read_csv('sam.csv')
df_['date'] = pd.to_datetime(df_['start_time']).dt.date
df_ = df_.set_index('start_time')
grouped = pd.DataFrame(df_.groupby(['date', 'status']).size().reset_index(name="count")).pivot(columns='status', index='date', values='count')
print(grouped)
sns.set()
grouped.plot(kind='bar', stacked=True)
# g = grouped.plot(x='date', kind='bar', stacked=True)
plt.show()
输出:
答案 1 :(得分:2)
尝试使用RFC 7228来重组df_
:
color = ['blue', 'yellow', 'green', 'red']
df_xtab = pd.crosstab(df_.start_time.dt.date, df_.status)
此DataFrame
如下所示:
status ABANDONED_BY_TIMEOUT ABANDONED_BY_USER COMPLETED
start_time
2017-10-31 1 0 0
2017-11-01 0 0 1
2017-11-02 1 0 2
2017-11-03 0 1 0
并且将更易于绘制。
df_xtab.plot(kind='bar',stacked=True, color=color, rot=90)
答案 2 :(得分:1)
使用seaborn库barplot
及其色调
代码:
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df_ = pd.read_csv('sam.csv')
df_['date'] = pd.to_datetime(df_['start_time']).dt.date
df_ = df_.set_index('start_time')
print(df_)
grouped = pd.DataFrame(df_.groupby(['date', 'status']).size().reset_index(name="count"))
print(grouped)
g = sns.barplot(x='date', y='count', hue='status', data=grouped)
plt.show()
数据:
status,start_time,end_time
COMPLETED,2017-11-01 19:58:54.726,2017-11-01 20:01:05.414
COMPLETED,2017-11-02 19:43:04.000,2017-11-02 19:47:54.877
ABANDONED_BY_USER,2017-11-03 23:36:19.059,2017-11-03 23:36:41.045
ABANDONED_BY_TIMEOUT,2017-10-31 17:02:38.689,2017-10-31 17:12:38.844
COMPLETED,2017-11-02 19:35:33.192,2017-11-02 19:42:51.074
ABANDONED_BY_TIMEOUT,2017-11-02 19:35:33.192,2017-11-02 19:42:51.074