如果我对数据集进行分区,当我读回它时,它的顺序是否正确?例如,考虑以下pyspark代码:
# read a csv
df = sql_context.read.csv(input_filename)
# add a hash column
hash_udf = udf(lambda customer_id: hash(customer_id) % 4, IntegerType())
df = df.withColumn('hash', hash_udf(df['customer_id']))
# write out to parquet
df.write.parquet(output_path, partitionBy=['hash'])
# read back the file
df2 = sql_context.read.parquet(output_path)
我在customer_id存储桶上进行分区。当我读回整个数据集时,是否保证分区可以按照原始插入顺序重新合并在一起?
现在,我不太确定,所以我要添加一个序列列:
df = df.withColumn('seq', monotonically_increasing_id())
但是,我不知道这是否多余。
答案 0 :(得分:2)
不,不能保证。尝试使用很小的数据集:
df = spark.createDataFrame([(1,'a'),(2,'b'),(3,'c'),(4,'d')],['customer_id', 'name'])
# add a hash column
hash_udf = udf(lambda customer_id: hash(customer_id) % 4, IntegerType())
df = df.withColumn('hash', hash_udf(df['customer_id']))
# write out to parquet
df.write.parquet("test", partitionBy=['hash'], mode="overwrite")
# read back the file
df2 = spark.read.parquet("test")
df.show()
+-----------+----+----+
|customer_id|name|hash|
+-----------+----+----+
| 1| a| 1|
| 2| b| 2|
| 3| c| 3|
| 4| d| 0|
+-----------+----+----+
df2.show()
+-----------+----+----+
|customer_id|name|hash|
+-----------+----+----+
| 2| b| 2|
| 1| a| 1|
| 4| d| 0|
| 3| c| 3|
+-----------+----+----+