我在下面有df,想确定满足以下所有条件的任意两个订单:
将使用Haversine Import Haversine计算每一行的取件差异以及每一行或订单的下车差异。
我当前拥有的df如下所示:
DAY Order pickup_lat pickup_long dropoff_lat dropoff_long created_time
1/3/19 234e 32.69 -117.1 32.63 -117.08 3/1/19 19:00
1/3/19 235d 40.73 -73.98 40.73 -73.99 3/1/19 23:21
1/3/19 253w 40.76 -73.99 40.76 -73.99 3/1/19 15:26
2/3/19 231y 36.08 -94.2 36.07 -94.21 3/2/19 0:14
3/3/19 305g 36.01 -78.92 36.01 -78.95 3/2/19 0:09
3/3/19 328s 36.76 -119.83 36.74 -119.79 3/2/19 4:33
3/3/19 286n 35.76 -78.78 35.78 -78.74 3/2/19 0:43
我希望输出df为满足上述条件的任意2个订单或行。我不确定的是如何为数据帧中的每一行计算该值,以返回满足这些条件的任何两行。
我希望我能正确解释所需的输出。感谢您的光临!
答案 0 :(得分:3)
我不知道这是否是最佳解决方案,但我没有提出其他建议。我所做的:
代码:
#create dataframe with all combination
from itertools import combinations
index_comb = list(combinations(trips.index, 2))#trip, your dataframe
col_names = trips.columns
orders1= pd.DataFrame([trips.loc[c[0],:].values for c in index_comb],columns=trips.columns,index = index_comb)
orders2= pd.DataFrame([trips.loc[c[1],:].values for c in index_comb],columns=trips.columns,index = index_comb)
orders2 = orders2.add_suffix('_1')
combined = pd.concat([orders1,orders2],axis=1)
from haversine import haversine
def distance(row):
loc_0 = (row[0],row[1]) # (lat, lon)
loc_1 = (row[2],row[3])
return haversine(loc_0,loc_1,unit='mi')
#pickup diff
pickup_cols = ["pickup_long","pickup_lat","pickup_long_1","pickup_lat_1"]
combined[pickup_cols] = combined[pickup_cols].astype(float)
combined["pickup_dist_mi"] = combined[pickup_cols].apply(distance,axis=1)
#dropoff diff
dropoff_cols = ["dropoff_lat","dropoff_long","dropoff_lat_1","dropoff_long_1"]
combined[dropoff_cols] = combined[dropoff_cols].astype(float)
combined["dropoff_dist_mi"] = combined[dropoff_cols].apply(distance,axis=1)
#creation time diff
combined["time_diff_min"] = abs(pd.to_datetime(combined["created_time"])-pd.to_datetime(combined["created_time_1"])).astype('timedelta64[m]')
#Thresholds
Z = 600
Y = 400
X = 400
#find orders with below conditions
diff_time_Z = combined["time_diff_min"] < Z
pickup_dist_X = combined["pickup_dist_mi"]<X
dropoff_dist_Y = combined["dropoff_dist_mi"]<Y
contitions_idx = diff_time_Z & pickup_dist_X & dropoff_dist_Y
out = combined.loc[contitions_idx,["Order","Order_1","time_diff_min","dropoff_dist_mi","pickup_dist_mi"]]
数据输出:
Order Order_1 time_diff_min dropoff_dist_mi pickup_dist_mi
(0, 5) 234e 328s 573.0 322.988195 231.300179
(1, 2) 235d 253w 475.0 2.072803 0.896893
(4, 6) 305g 286n 34.0 19.766096 10.233550
希望我能很好地理解您,这会有所帮助。
答案 1 :(得分:2)
使用如上所述的数据框。删除索引。我假设您的created_time列为日期时间格式。
import pandas as pd
from geopy.distance import geodesic
交叉合并数据框以获取“订单”的所有可能组合。
df_all = pd.merge(df.assign(key=0), df.assign(key=0), on='key').drop('key', axis=1)
删除顺序相同的所有行。
df_all = df_all[-(df_all['Order_x'] == df_all['Order_y'])].copy()
删除重复的行,其中Order_x,Order_y == [a,b]和[b,a]
# drop duplicate rows
# first combine Order_x and Order_y into a sorted list, and combine into a string
df_all['dup_order'] = df_all[['Order_x', 'Order_y']].values.tolist()
df_all['dup_order'] = df_all['dup_order'].apply(lambda x: "".join(sorted(x)))
# drop the duplicates and reset the index
df_all = df_all.drop_duplicates(subset=['dup_order'], keep='first')
df_all.reset_index(drop=True)
创建一列以分钟为单位计算时差。
df_all['time'] = (df_all['dt_ceated_x'] - df_all['dt_ceated_y']).abs().astype('timedelta64[m]')
创建一列并计算下车点之间的距离。
df_all['dropoff'] = df_all.apply(
(lambda row: geodesic(
(row['dropoff_lat_x'], row['dropoff_long_x']),
(row['dropoff_lat_x'], row['dropoff_long_y'])
).miles),
axis=1
)
创建一列并计算拾音器之间的距离。
df_all['pickup'] = df_all.apply(
(lambda row: geodesic(
(row['pickup_lat_x'], row['pickup_long_x']),
(row['pickup_lat_x'], row['pickup_long_y'])
).miles),
axis=1
)
根据需要过滤结果。
X = 1500
Y = 2000
Z = 100
mask_pickups = df_all['pickup'] < X
mask_dropoff = df_all['dropoff'] < Y
mask_time = df_all['time'] < Z
print(df_all[mask_pickups & mask_dropoff & mask_time][['Order_x', 'Order_y', 'time', 'dropoff', 'pickup']])
Order_x Order_y time dropoff pickup
10 235d 231y 53.0 1059.026620 1059.026620
11 235d 305g 48.0 260.325370 259.275948
13 235d 286n 82.0 249.306279 251.929905
25 231y 305g 5.0 853.308110 854.315567
27 231y 286n 29.0 865.026077 862.126593
34 305g 286n 34.0 11.763787 7.842526