我试图理解linear_regression.py示例(https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py)。我是Tensorflow和Python的新手。
有人可以解释“ 拟合所有训练数据”和“ 每个时期显示日志”下写的代码吗?
# Fit all training data
for epoch in range(training_epochs):
for (x, y) in zip(train_X, train_Y): #Creates a Dataset by zipping together the given datasets.
sess.run(optimizer, feed_dict={X: x, Y: y})
# Display logs per epoch step
if (epoch+1) % display_step == 0:
c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
"W=", sess.run(W), "b=", sess.run(b))